• Antibody Engine
  • Vaccine Technology
  • Publications/Presentations
  • Publications/Presentations

    Society for Immunotherapy of Cancer Annual Meeting, 2018

    A Phase 1 Study of Safety and Tolerability of AGEN2003 Vaccine in Patients With Advanced Cancer

    AGEN2373 is a conditionally-active agonist antibody targeting the co-stimulatory receptor CD137 for the treatment of human malignancies

    Identification of Shared Phosphopeptide Tumor Targets in Colorectal Cancer for Novel Off-the-shelf Vaccine Development

    European Society for Medical Oncology (ESMO) Congress, 2018

    Phase 1/2, Open-Label, Multiple Ascending Dose Trial of AGEN2034, an Anti–PD-1 Monoclonal Antibody, in Advanced Solid Malignancies: Results of Dose Escalation in Advanced Cancer and Expansion Cohorts in Subjects With Relapsed/Refractory Cervical Cancer

    Phase 1/2 Study of CTLA-4 Inhibitor AGEN1884 + PD-1 Inhibitor AGEN2034 in Patients With Advanced/Refractory Solid Tumors, With Expansion Into Second-Line Cervical Cancer and Solid Tumors

    Immune Checkpoint Inhibitors: Response Rates in Solid Tumors

    Agenus Slide

    Next Gen Immuno-Oncology Congress 2018

    The remarkable efficiency of chaperone-based synthetic cancer vaccines

    ASCO 2018 Poster Presentations

    Phase 1 Open-Label, Ascending Dose Trial of AGEN1884, an anti-CTLA-4 Monoclonal Antibody, in Advanced Solid Malignancies: Dose Selection for Combination With PD-1 Blockade

    Phase 1/2 Open-Label, Multiple Ascending Dose Trial of AGEN2034, an anti-PD-1 Monoclonal Antibody, in Advanced Solid Malignancies: Results of Dose Escalation

    AACR 2018 Poster Presentations

    Evaluation of Peripheral T-Cell Subset Proliferation as a Pharmacodynamic Assay to Guide the Development of Anti-CTLA-4 and PD-1 Antibody Combinations in Patients With Solid Tumors

    INCAGN02390, a Novel Antagonist Antibody That Targets the Co-Inhibitory Receptor TIM-3

    INCAGN02385 Is an Antagonist Antibody Targeting the Co-Inhibitory Receptor LAG-3 for the Treatment of Human Malignancies

    The Society for Immunotherapy of Cancer (SITC) 2017

    AGEN2034, a novel anti-PD-1 antibody that combines effectively with CTLA-4 blockade to enhance T cell activity

    AGEN1884, an anti-CTLA-4 antibody – characterization  of AGEN1884 including toxicology and pharmacology assessments in non-human primates

    ASCO Poster Presentations 2017

    Phase 1, Open-Label, Multiple-Ascending-Dose Trial of AGEN1884, an Anti–CTLA-4 Monoclonal Antibody, in Advanced Solid Malignancies

    AACR Poster Presentations 2017

    AGEN1884, an IgG1 Anti-CTLA-4 Antibody, Combines Effectively with PD-1 Blockade in Primary Human T Cell Assays and in a Non-human Primate Pharmacodynamic (PD) Model

    INCAGN1949, an Anti-OX40 Antibody With an Optimal Agonistic Profile and the Ability to Selectively Deplete Intratumoral Regulatory T Cells

    INCAGN1876, a Unique GITR Agonist Antibody That Facilitates GITR Oligomerization

    Agenus’ Next Generation Vaccine Platforms

    AACR Poster Presentations 2016

    AGEN1884 and AGEN2041: Two Functionally Distinct Anti-CTLA-4 Antagonist Antibodies

    INCAGN01949: A Novel Anti-OX40 Agonist Antibody with the Potential to Enhance Tumor Specific T-cell Responsiveness, while Selectively Depleting Intratumoral Regulatory T Cells

    A Novel Agonist Antibody (INCAGN01876) that Targets the Costimulatory Receptor GITR

    Other Publications

    ProphageTM Vaccine Publications


    Phase 2

    Bloch O, Lim M, Sughrue ME, Komotar RJ, Abrahams JM, O’Rourke DM, D’Ambrosio A, Bruce JN, Parsa AT. Autologous heat shock protain peptide vaccination for newly diagnosed Glioblastoma: impact of peripheral PD-L1 expression on response to therapy. Clin Cancer Res. 2017 In Press.

    Phase 2 (Protocol C-100-34)

    Parsa et al., Neuro Oncol. 2014 Jan;16(2):274-9. Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial.

    Crane CA, Han SJ, Ahn B, Oehlke J, Kivett V, Fedoroff A, Butowski N, Chang SM, Clarke J, Berger MS, McDermott MW, Prados MD, Parsa AT. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin Cancer Res. 2013 Jan 1;19(1):205-14.

    Phase 2 (Protocol C-100-37)

    Bloch O, Kaur T, Aghi M et al. Progression-Free Survival In A Trial of Immunotherapy For Glioblastoma [abstract]. In: Proceedings of the 81st Annual Meetings of the American Association of Neurological Surgeons; 2013 April 28-May 1; New Orleans, LA: J. Neurosurgery 2013; vol 119. p. A565. Abstract nr 801.

    Renal Cell Carcinoma (RCC)

    Phase 3 survival update (Protocol C-100-27)

    Wood C, Srivastava P, Lacombe L, et al. Survival update from a multicenter, randomized, phase III trial of vitespen versus observation as adjuvant therapy for renal cell carcinoma in patients at high risk of recurrence. J Clin Oncol. 27:15s, 2009(suppl; abstr 3009).

    Phase 3 (Protocol C-100-12)

    Wood C, Srivastava P, Bukowski R, et al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet. 2008;372(9633):145-154.

    Phase 2 (Protocol C-100-07)

    Jonasch E, Wood C, Tamboli P, et al. Vaccination of metastatic renal cell carcinoma patients with autologous tumour-derived vitespen vaccine: clinical findings. Br J Cancer. 2008;98:1366-1341.


    Phase 3 (Protocol C-100-21)

    Testori A, Richards J, Whitman E, et al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100-21 Study Group. J Clin Oncol. 2008;26:955-962.

    Phase 2 (Protocol C-100-06)

    Belli F, Testori A, Rivoltini L, et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol. 2002;20:4169-4180.

    Phase 2 (Protocol C-100-22)

    Pilla L, Patuzzo R, Rivoltini L, et al. A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes gp96, in combination with GM-CSF and interferon-alpha in metastatic melanoma patients. Cancer Immunol Immunother. 2006;55:958-968.

    Phase 1/2 (Protocol C-100-02)

    Eton O, Ross MI, East MJ, et al. Autologous tumor-derived heat-shock protein peptide complex-96 (HSPPC-96) in patients with metastatic melanoma. J Trans Med. 2010;8:9.

    Colorectal Cancer

    Phase 2 (Protocol C-100-05)

    Mazzaferro V, Coppa J, Carrabba MG, et al. Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res. 2003;9:3235-3245.

    Pancreatic Cancer

    Phase 1 (Protocol C-100-01)

    Maki RG, Livingston PO, Lewis JJ, et al. A phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic adenocarcinoma. Dig Dis Sci. 2007;52:1964-1972.

    Non-Small Cell Lung Cancer

    Phase 1 (Protocol C-100-26)

    Santis G, Senzer NN, Champagne P, Isakov L, Teofilovici F, et al. Phase II feasibility study of autologous vaccine (HSPPC-96) in patients with resectable lung cancer. J Clin Oncol. 2008;26: (May 20 suppl; abstr 7584).

    Non-Hodgkin’s Lymphoma

    Phase 2 (Protocol C-100-09)

    Oki Y, McLaughlin P, Fayad LE, et al. Experience with heat shock protein-peptide complex 96 vaccine therapy in patients with indolent non-Hodgkin lymphoma. Cancer. 2007;109:77-83.

    Gastric Cancer

    Phase 1 (Protocol C-100-04)

    Hertkorn C, Lehr A, Woelfel T, et al. Phase I trial of vaccination with autologous tumor-derived gp96 (Oncophage) in patients after surgery for gastric cancer. J Clin Oncol. 2002 (abstr 117).

    Other Clinical Trial Publications

    Srivastava PK, Callahan MK, Mauri MM. Treating human cancers with heat shock protein-peptide complexes: the road ahead. Expert Opin Biol Ther. 2009;9:179-86.

    Li Z, Qiao Y, Liu B, et al. Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia. Clin Cancer Res. 2005;11:4460-4468.

    Pilla L, Squarcina P, Coppa J, et al. Natural killer and NK-like T-cell activation in colorectal carcinoma patients treated with autologous tumor-derived heat shock protein 96. Cancer Res. 2005;65:3942-3949.

    Rivoltini L, Castelli C, Carrabba M, et al. Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells. J Immunol. 2003;171:3467-3474.

    Castelli C, Ciupitu AM, Rini F, et al. Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res. 2001;61:222-227.

    Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis JJ, Srivastava PK. Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer. 2000;88:232-238

    QS-21 Stimulon® Adjuvant Publications

    Cunningham AL, Lal H, Kovac M, et al. Efficacy of the herpes zoster subunit vaccine in adults 70 years of age or older. N Engl J Med. 2016;375(11):1019-1032.

    Agnandji ST, Lell B, Soulanoudjingar SS, et al. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N Engl J Med. 2011;365(20):1863-75.

    Garçon N, Van Mechelen M. Recent clinical experience with vaccines using MPL- and QS-21- containing adjuvant systems. Expert Rev Vaccines. 2011;10(4):471-86.

    Aide P, Dobaño C, Sacarlal J, et al. Four year immunogenicity of the RTS,S/AS02(A) malaria vaccine in Mozambican children during a phase IIb trial. Vaccine. 2011;29(35):6059-67.

    Bejon P, Cook J, Bergmann-Leitner E, et al. Effect of the pre-erythrocytic candidate malaria vaccine RTS,S/AS01E on blood stage immunity in young children. J Infect Dis. 2011;204(1):9-18.

    Asante KP, Abdulla S, Agnandji S, et al. Safety and efficacy of the RTS,S/AS01(E) candidate malaria vaccine given with expanded-programme-on immunisation vaccines: 19 month follow-up of a randomised, open-label, phase 2 trial. Lancet Infect Dis. 2011 ;11(10):741-9.

    Wald A, Koelle DM, Fife K, et al. Safety and immunogenicity of long HSV-2 peptides complexed with rhHsc70 in HSV-2 seropositive persons. Vaccine. 2011 Sep 21.

    Mo A, Musselli C, Chen H, et al. A heat shock protein based polyvalent vaccine targeting HSV-2: CD4(+) and CD8(+) cellular immunity and protective efficacy. Vaccine. 2011 Jul 19.

    Surquin M, Tielemans CL, Kulcsar I, et al.  Rapid, enhanced, and persistent protection of patients with renal insufficiency by AS02(V)-adjuvanted hepatitis B vaccine. Kidney Int. 2010;77:247-255.

    Abdulla S, Oberholzer R, Juma O, et al. Safety and immunogenicity of RTS,S/AS02D malaria vaccine in infants. N Engl J Med. 2008;359:2533-2544.

    Bejon P, Lusingu J, Olotu A, et al. Efficacy of RTS,S/AS01E vaccine against malaria in children 5 to 17 months of age. N Engl J Med. 2008;359:2521-2532.

    Brichard VG, Lejeune D. Cancer immunotherapy targeting tumour-specific antigens: towards a new therapy for minimal residual disease. Expert Opin Biol Ther. 2008;8:951-968.

    Vandepapeliere P, Horsmans Y, Moris P, et al. Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers. Vaccine. 2008;26:1375-1386.

    Warfield KL, Olinger G, Deal EM, et al. Induction of humoral and CD8+ T cell responses are required for protection against lethal Ebola virus infection. J Immunol. 2005;175:1184-1191.

    Schaed SG, Klimek BM, Panageas KS, et al. T-cell responses against tyrosinase 368-376(370D) peptide in HLA*A0201+ melanoma patients: randomized trial comparing incomplete Freund’s adjuvant, granulocyte macrophage colony-stimulating factor, and QS-21 as immunological adjuvants. Clin Cancer Res. 2002;8:967-972.

    Boyaka PN, Marinaro M, Jackson RJ, et al. Oral QS-21 requires early IL-4 help for induction of mucosal and systemic immunity. J Immunol. 2001;166:2283-2290.

    Evans TG, McElrath MJ, Matthews T, et al. QS-21 promotes an adjuvant effect allowing for reduced antigen dose during HIV-1 envelope subunit immunization in humans. Vaccine. 2001;19:2080-2091.

    Waite DC, Jacobson EW, Ennis FA, et al. Three double-blind, randomized trials evaluating the safety and tolerance of different formulations of the saponin adjuvant QS-21. Vaccine. 2001;19:3957-3967.

    Nardin EH, Oliveira GA, Calvo-Calle JM, et al. Synthetic malaria peptide vaccine elicits high levels of antibodies in vaccines of defined HLA genotypes. J Infect Dis. 2000;182:1486-1496.

    Kim SK, Ragupathi G, Musselli C, Choi SJ, Park YS, Livingston PO. Comparison of the effect of different immunological adjuvants on the antibody and T-cell response to immunization with MUC1-KLH and GD3-KLH conjugate cancer vaccines. Vaccine. 1999;18:597-603.

    Sasaki S, Sumino K, Hamajima K, et al. Induction of systemic and mucosal immune responses to human immunodeficiency virus type 1 by a DNA vaccine formulated with QS-21 saponin adjuvant via intramuscular and intranasal routes. J Virol. 1998;72:4931-4939.

    Stoute JA, Slaoui M, Heppner DG, et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. RTS,S Malaria Vaccine Evaluation Group. N Engl J Med. 1997;336:86-91.

    Jacobsen NE, Fairbrother WJ, Kensil CR, Lim A, Wheeler DA, Powell MF. Structure of the saponin adjuvant QS-21 and its base-catalyzed isomerization product by 1H and natural abundance 13C NMR spectroscopy. Carbohydr Res. 1996;280:1-14.

    Helling F, Zhang S, Shang A, et al. GM2-KLH conjugate vaccine: increased immunogenicity in melanoma patients after administration with immunological adjuvant QS-21. Cancer Res. 1995;55:2783-2788.

    Kensil CR. Saponins as vaccine adjuvants. Crit Rev Ther Drug Carrier Syst. 1996;13:1-55.

    Newman MJ, Wu JY, Gardner BH, et al. Saponin adjuvant induction of ovalbumin-specific CD8+ cytotoxic T lymphocyte responses. J Immunol. 1992;148:2357-2362.

    Kensil CR, Patel U, Lennick M, Marciani D. Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J Immunol. 1991;146:431-437.