Poster #

Botensilimab plus balstilimab in an expanded cohort of 123 patients with metastatic microsatellite stable colorectal cancer and no active liver metastases

Benjamin L. Schlechter, MD¹, Marwan G. Fakih, MD², Apostolia M. Tsimberidou, MD, PhD³, Andrea J. Bullock, MD⁴, Agustin Pimentel, MD⁵, Sunil Sharma, MD, MBA⁶, Heinz-Josef Lenz, MD⁷, Michael S. Gordon, MD⁶, Ghassan K. Abou-Alfa, MD, JD, MBA, PhD⁸⁻¹⁰, Thomas Marron, MD, PhD¹¹, Robert Lentz, MD¹², Ian Chau, MD, FRCP¹³, Dhan Chand, PhD¹⁴, Manushak Avagyan, MD, MPH¹⁴, Wei Wu, MS¹⁴, Benny Johnson, DO¹⁴, Joseph E. Grossman, MD¹⁴, Anthony B. El-Khoueiry, MD⁷, Neil H. Segal, MD, PhD⁸

¹Dana-Farber Cancer Institute, Boston, MA, USA; ²City of Hope Comprehensive Cancer Center, Los Angeles, CA, USA; ³The University of Texas MD Anderson Cancer Center, Boston, MA, USA; ⁴Beth Israel Deaconess Medical Center, Los Angeles, CA, USA; ⁴University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ⁴Conter, Cancer Center, Boston, MA, USA; ⁴Deth Israel Deaconess Medical Center, Boston, MA, USA; ⁴Conter, Cancer Center, Cancer Center, Comprehensive Cancer Center, CA, USA; ⁴Deth Israel Deaconess Medical Center, Cancer Center, Comprehensive Cancer Center, Comprehensive Cancer Center, Cancer Cent ⁸Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁹Weill Medical College at Cornell University, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Tisch Cancer Institute, New York, NY, USA; ¹⁰Trinity College Dublin, Dublin, Ireland; ¹¹Mount Sinai, Sinai,

BACKGROUND

- In microsatellite stable metastatic colorectal cancer (MSS mCRC), conventional immunotherapy is largely ineffective, and options remain limited for patients who progress on prior chemotherapy
- Botensilimab (BOT) is an Fc-enhanced, multifunctional anti-CTLA-4 antibody designed to leverage novel mechanisms of action that enhance T cell priming, regulatory T cell depletion, and macrophage and dendritic cell activation to overcome the immunologically "cold" tumor microenvironment in MSS mCRC (Figure 1) while the addition of balstilimab (BAL; anti-PD-1 antibody) sustains the activated immune response¹
- BOT plus BAL has demonstrated durable clinical responses across multiple treatment-refractory solid tumors including 3L+ MSS mCRC with no active liver metastases (NLM)²
- Here we demonstrate durable clinical benefit of BOT/BAL in a larger cohort of patients with 3L+ MSS mCRC NLM, including patients who have exhausted all available standard therapies (4L+), confirming the therapeutic potential of this novel immunotherapy combination in a challenging patient population

Botensilimab Mechanism of Action

Figure 1. A novel innate and adaptive immune activator supporting superior antitumor immunity. BOT promotes enhanced T cell priming and expansion, T cell activation and memory formation, activation of APCs, and reduction of intratumoral Tregs, while improving safety through a reduction in complement-mediated toxicities associated with conventional CTLA-4 inhibitors.¹

To drive durability of tumor response, BOT is combined with BAL, which has activity comparable to commercially available PD-1 inhibitors^{3,4}

C-800-01 Study Design: MSS mCRC NLM Cohort (N=123)

NCT03860272: First-in-human trial of BOT ± BAL in patients with advanced cancer⁵

Data cutoff date: 13-MAR-2025

- Safety Analysis Population 123 patients with 3L+ MSS mCRC NLM treated with 1 or 2 mg/kg BOT Q6W plus 3 mg/kg BAL Q2W
- Late-Line Population **37** patients with **4L+ MSS mCRC NLM** who received at least one regimen of regorafenib, trifluridine/tipiracil ± bevacizumab, or fruquintinib

RESULTS

Patient Characteristics			Clinical Efficacy & Outcomes			
	Overall (3L+) N=123	Late-Line (4L+) n=37		Overall (3L+) N=123	Late-Line (4L+) n=37	
Age, median (range) Sex, n (%)	56 (25-82)	60 (36-81)	ORR, n (%) 95% Cl	24 (20%) 13-28	7 (19%) 8-35	
Male	63 (51%)	21 (57%)	BOR, n (%)			
Female FCOG PS at baseline n (%)	60 (49%)	16 (43%)	CR	3 (2%)	1 (3%)	
0	56 (46%)	15 (41%)	PR	21 (17%)	6 (16%)	
1	67 (54%)	22 (59%)	SD	61 (50%)	19 (51%)	
Primary Site*			PD	34 (28%)	9 (24%)	
Colon	81 (66%)	25 (68%)	NE	4 (3%)	2 (5%)	
Prior lines of therapy, n (%)	42 (34%)	12 (32%)	Median DOR, months (95% CI)	16.6 (5.7–NR)	16.6 (1.9–NR)	
Median (range)	3.0 (1–10)	5.0 (2-10)	DCR at 6 weeks, n (%)	85 (69%)	26 (70%)	
≥3	82 (67%)	33 (89%)	95% CI	60-77	53-84	
Received at least one regimen of regorafenib, trifluridine/tipiracil ±	37 (30%)	37 (100%)	CBR at 24 weeks, n (%) ^b 95% Cl	34 (28%) 20-36	10 (27%) 14-44	
Liver Metastases Status n (%)			Median PFS, months (95% CI)	4.0 (2.8-4.1)	4.1 (2.8-6.4)	
Treated liver metastases	20 (16%)	6 (16%)	12-month PFS, % (95% CI)	23% (15–31)	20% (8.5-36.0)	
No history of liver metastases	103 (84%)	31 (84%)	Median OS, months (95% CI)	20.9 (16.2–26.6)	16.2 (9.7–NR)	
Other Characteristics, n (%)			18-month OS. % (95% CI)	57% (48-66)	48% (31-63)	
Prior PD-(L)1/CTLA-4, n (%)	18 (15%)	11 (30%)	24 month OS % (05% Cl)			
TMB>13, mut/Mb, n/N (%)	0/52 (%)	0/18 (0%)		42%(32-32)	43 % (Z3-39)	
RAS mutation, n/N (%)	76/113 (67%)	23/32 (72%)	Median follow-up, months (range)	18.0 (0.7-53.3)	12.0 (2.3-37.1)	
BRAF mutation, n/N (%)	3/43 (7%)	2/11 (18%)	Median follow-up (reverse KM), months (95% CI)	25.8 (19.4–31.2)	19.4 (18.5–28.8)	

References 1. Chand D, et al. Cancer Discov. 2024;14:2407-2429. 2. Bullock AJ, et al. Nat Med. 2024;30:2558-2567. 3. O'Malley, et al. Gynecol Oncol; 2021; 163:274-280. 4. O'Malley, et al. J Clin Oncol; 2021; 40:762-771. 5.https://clinicaltrials.gov/ct2/show/NCT03860272.

)/	tumor	arouth
/0	lumor	growu
_		<u> </u>

30% tumor reduction

Safetv

	Overall N=123		1 mg/kg BOT + BAL n=62		2 mg/kg BOT + BAL n=61	
	Any Grade	Grade 3	Any Grade	Grade 3	Any Grade	Grade 3
Any imAE, n (%)ª	71 (58%)	36 (29%)	28 (45%)	15 (24%)	43 (70%)	21 (34%)
Diarrhea/colitis	51 (41%)	19 (15%)	18 (29%)	7 (11%)	33 (54%)	12 (20%) ^b
lmmune thyroiditis ^c	9 (7%)	0 (0%)	4 (6%)	0 (0%)	5 (8%)	0 (0%)
Pneumonitis	6 (5%)	3 (2%)	1 (2%)	1 (2%)	5 (8%)	2 (3%)
Hepatitis	6 (5%)	3 (2%)	3 (5%)	1 (2%)	3 (5%)	2 (3%)
Adrenal insufficiency	4 (3%)	2 (2%)	2 (3%)	2 (3%)	2 (3%)	0 (0%)
Dermatologic ^d	4 (3%)	1 (1%)	0 (0%)	0 (0%)	4 (7%)	1 (2%)

Table 3. All immune-mediated adverse events in ≥3% of all patients (N=123). ^aimAEs were medically adjudicated. ^bThere was only one grade 4 imAE of diarrhea/colitis in the 2 mg/kg BOT dose group (not included in the table). ^cIncludes unique patients with hypothyroidism, hyperthyroidism, and thyroiditis. ^dDermatologic category does not include grade 1 events that were managed with topical steroids only.

- No new safety signals
- GI-related imAEs were the most common and reversible
- Low incidence of visceral toxicities outside the GI tract
- Only one grade 4 imAE across cohort
- No treatment-related deaths (grade 5)

CONCLUSIONS

- Updated data with additional patients and mature follow-up demonstrated remarkable clinical benefit with deep, durable responses in 3L+ MSS mCRC NLM
- Similar remarkable efficacy was observed in late-line patients (4L+) who have no currently available therapies
- The **safety profile was manageable** with only one grade 4 imAE, no treatment-related deaths, and no new safety signals
- These results form the basis of a pivotal, global, phase 3 registrational trial planned to commence by the end of 2025.

Disclosures BLS: Consulting or Advisory Role – Agenus; AstraZeneca; Janssen

Correspondence: Benjamin L. Schlechter, MD: benjamin_schlechter@dfci.harvard.edu

Acknowledgments Agenus Inc. funded and is the sponsor of this study. The authors would like to thank the patients and their families for participating in the C-800-01 study, as well as the trial coordinators and investigators for their contributions

Abbreviations AE, adverse event ; APC, antigen presenting cell; BAL, balstilimab; BOR, best overall response; BOT, botensilimab; BRAF, v-raf murine sarcoma viral oncogene homolog B1; CBR, clinical benefit rate (CR, PR, or SD ≥24 weeks); CR, complete response; CNS, central nervous system; CTLA-4, cytotoxic T-lymphocyte associated protein-4; DCR, disease control rate (CR, PR, or SD \geq 6 weeks); DOR, duration of response; ECOG, Eastern Cooperative Oncology Group; Fc, fragment crystallizable; Fc γ R, fragment crystallizable gamma receptor; GI, gastrointestinal ; imAE, immune-mediated adverse event; I-O, immuno-oncology; KM, Kaplan-Meier; mCRC, metastatic colorectal cancer; MSS, microsatellite stable; NE, not evaluable; NK, natural killer; NLM, no active liver metastases; NR, not reached; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; ; PD, progressive disease; PD-1, programmed cell death protein 1 ; PD-L1, programmed death ligand 1; PR, partial response; PS, performance status; Q[X]W, every X weeks; RAS, rat sarcoma virus; RECIST 1.1, Response Evaluation Criteria in Solid Tumors version 1.1; SD, stable disease; TMB, tumor mutational burden; Treg, regulatory T cell.