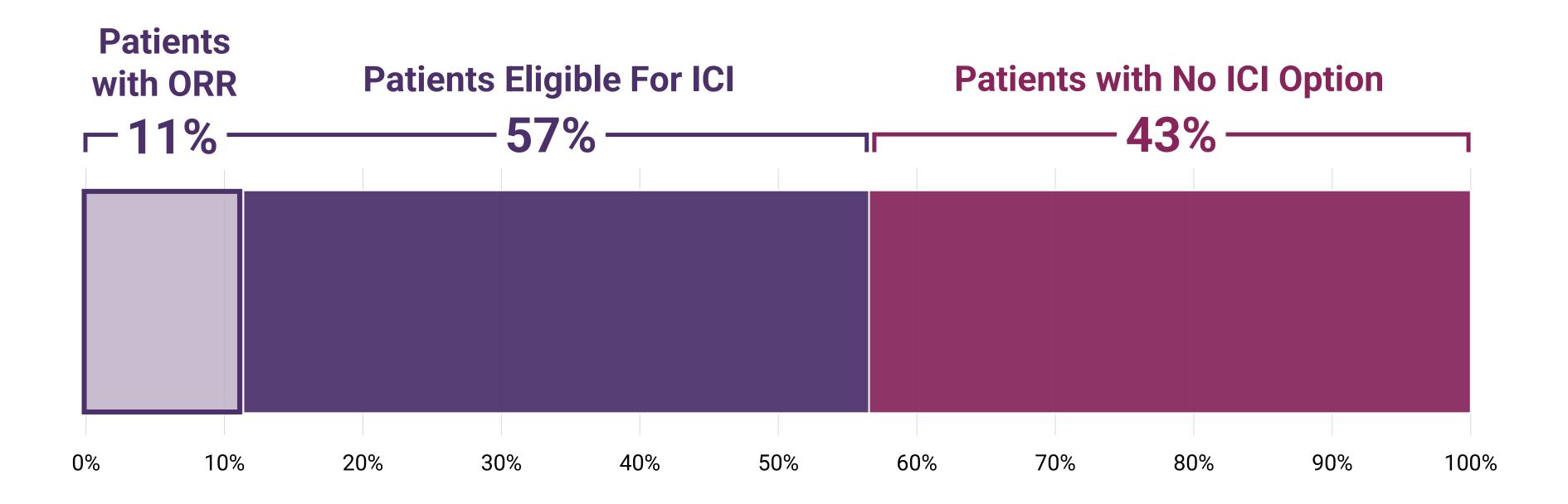


Emerging survival plateaus with botensilimab and balstilimab: Pan tumor data from a large phase 1b trial of advanced solid tumors

Michael S. Gordon, MD, FASCO¹, Apostolia M. Tsimberidou, MD, PhD², Benjamin L. Schlechter, MD³, Breelyn A. Wilky, MD⁴, Marwan G. Fakih, MD⁵, Andrea J. Bullock, MD⁶, Ghassan K. Abou-Alfa, MD, PhD, JD, MBA⁷⁻⁹, Jonathan Goldman, MD¹⁰, Robin Jones, MBBS, MRCP¹¹, Justin Stebbing, MD, PhD¹², Dhan Chand, PhD¹³, Wei Wu, MS¹³, Benny Johnson, DO¹³, Joseph E. Grossman, MD¹³, Steven O'Day, MD¹³, Anthony El-Khoueiry, MD¹⁴

¹HonorHealth Research Institute, Scottsdale, AZ, USA; ²MD Anderson Cancer Center, Houston, TX, USA; ³Dana-Farber Cancer Institute, Boston, MA, USA; ⁴University of Colorado Cancer Center, Aurora, CO, USA; ⁵City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ⁶Beth Israel Deaconness Medical Center, Boston, MA, USA; ⁷Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁸Weill Medical College at Cornell University, New York, NY, USA; ⁹Trinity College Dublin, Dublin, Ireland; ¹⁰UCLA Santa Monica Hematology Oncology, Santa Monica, CA, USA; ¹¹Royal Marsden Hospital and Institute of Cancer Research, London, UK; ¹²Anglia Ruskin University, Cambridge, UK; ¹³Agenus Inc, Lexington, MA, USA; ¹⁴USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA


DECLARATION OF INTERESTS

Michael S. Gordon declares the following:

- Stock and other ownership interests at Sphinx Health Solutions (previously CAREMISSION)
- Consulting or advisory role with Imaging Endpoints, Morphic Therapeutic, Viracta Therapeutics,
 Qualigen Therapeutics, OnQuality Pharmaceuticals, SpringWorks Therapeutics, and Deciphera
- Research funding from Genentech/Roche (Inst), GlaxoSmithKline (Inst), AbbVie (Inst), Merck Serono (Inst), Pfizer (Inst), Plexxikon (Inst), Deciphera (Inst), Corcept Therapeutics (Inst), Syndax (Inst), Tolero Pharmaceuticals (Inst), ImaginAb (Inst), Arcus Biosciences (Inst), Agenus Inc (Inst), Novartis (Inst), Revolution Medicines (Inst), IgM Biosciences (Inst), Veru (Inst), Forma Therapeutics (Inst), DynamiCure Biotechnology (Inst), Fore Biotherapeutics (Inst), NiKang Therapeutics (Inst), Nimbus Therapeutics (Inst), OncoResponse (Inst), Pionyr (Inst), Riboscience (Inst), Sirnaomics (Inst), Theseus Pharmaceuticals (Inst), SQZ Biotech (Inst), Shenzen Ionova (Inst), and Pyxis (Inst)
- Patents, royalties, or other intellectual property: Application Serial No.: PCT/US24/27766 Filing Date: May 3, 2024 Title: Planet atmosphere gases enwrapped into composite nanomaterials with medical treatment applications

Historical Challenges with Immune Checkpoint Inhibitors in Solid Advanced Cancers

Botensilimab (BOT)* and Balstilimab (BAL): *Multifunctional, Fc-Enhanced CTLA-4 Inhibitor

BOT1-3

CTLA-4 Inhibitor

- Enhances T cell priming, activation and memory
- Activates APCs/myeloid cells
- Reduces intratumoral regulatory T cells
- Improves safety by reducing complement-mediated toxicities (e.g., hypophysitis)

BAL^{4,5}

PD-1 Inhibitor

 Functionally comparable to other PD-1 inhibitors

We present updated, pan-tumor data from the phase 1b C-800-01 trial of BOT+BAL in advanced cancers

1. Bullock AJ, et al. Nat Med. 2024;30(9):2558-2567. **2.** Waight JD, et al. Cancer Cell. 2018;33(6):1033-1047.e5. **3.** Chand D, et al. Cancer Discov. 2024;14(12):2407-2429. **4.** O'Malley DM, et al. Gynecol Oncol. 2021;163(2):274-280. **5.** O'Malley DM, et al. J Clin Oncol. 2022;40(7):762-771.

C-800-01: Phase 1b Trial Design

First-in-Human, Phase 1b Trial of BOT ± BAL in Patients with Advanced Cancer (NCT03860272)^{a,1-3}

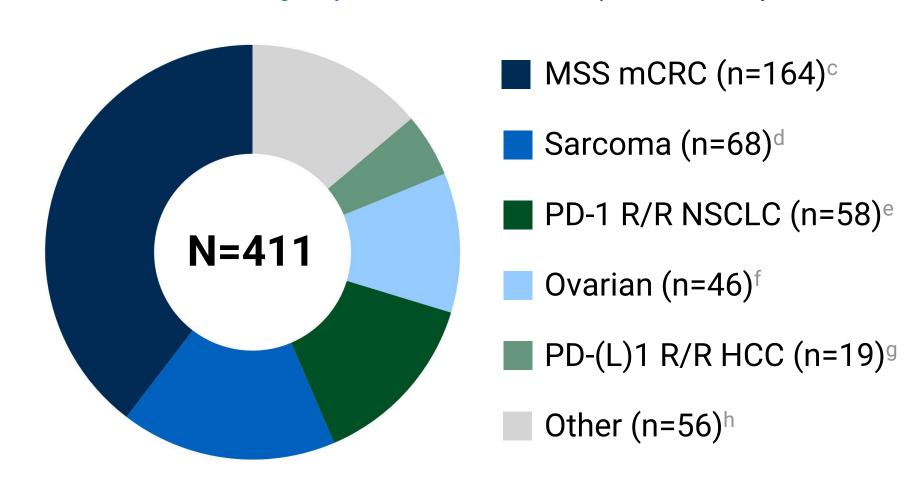
KEY ELIGIBILITY

- Advanced solid tumors refractory to standard treatment
- Prior I-O therapy allowed

COMBINATION THERAPY ARMb

BOT Q6W

1 mg/kg or 2 mg/kg


Fc-enhanced, multifunctional, anti-CTLA-4 mAb +

BAL Q2W 3 mg/kg

Inhibitory anti-PD-1 mAb

PAN TUMOR POPULATION

Immunologically "Cold" Tumors; I-O Relapsed/Refractory

Data cutoff: 13-MAR-2025. Safety analysis set (N=411; participants who received ≥1 dose of study drug).

and one of the second and expansion cohort design with BOT monotherapy and BOT+BAL (N=496 participants treated). Assessments of ORR, DOR, DCR and PFS were per Response Evaluation Criteria in Solid Tumors version 1.1 based on investigator assessment. bCrossover to combination from BOT monotherapy permitted, as well as fixed-dosing (BOT 150 mg Q6W + BAL 450 mg Q3W, which was pooled with the 2 mg/kg BOT Q6W + 3 mg/kg BAL Q2W population for analysis). BOT dose 1mg/kg n=79; 2 mg/kg n=85. BOT dose 1mg/kg n=85. BOT dose 1mg/kg n=24. BOT dose 1mg/kg n=27; 2 mg/kg n=10. BOT dose 1mg/kg n=27; 2 mg/kg n=27

^{1.} ClinicalTrials.gov identifier: NCT03860272. Updated February 6, 2026. Accessed August 7, 2025. https://clinicaltrials.gov/ct2/show/NCT03860272

^{2.} El-Khoueiry AB, et al. Poster presented at SITC Annual Meeting. Washington, DC, USA. 2021. Poster 479. 3. Wilky BA, et al. Oral presentation at SITC Annual Meeting. Boston, MA, USA. 2022. Oral 778.

Patient Characteristics

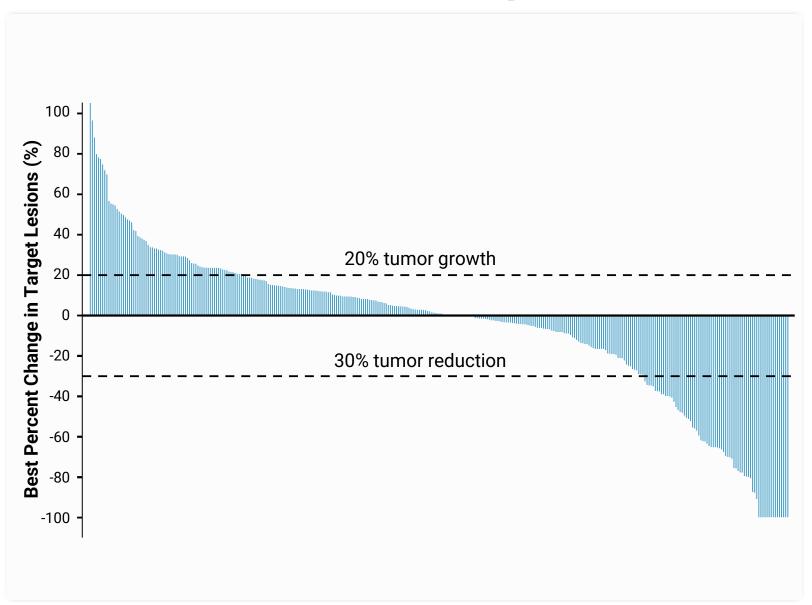
	Overall Population		
Characteristic	(N=411)		
Median age (range)	61 (19-82)		
Female, n (%)	242 (59)		
ECOG PS, n (%)			
0	177 (43)		
1	234 (57)		
Prior lines of therapy			
Median no. of prior lines (range)	3 (0-17)		
≥3 prior lines, n (%)	251 (61)		
Prior PD-(L)1 and/or CTLA-4, n (%)	136 (33)		
Multiple metastatic sites n (%)	284 (69)		
Active liver metastases, n (%)	126 (31)		

Durable Responses Across Tumor Types

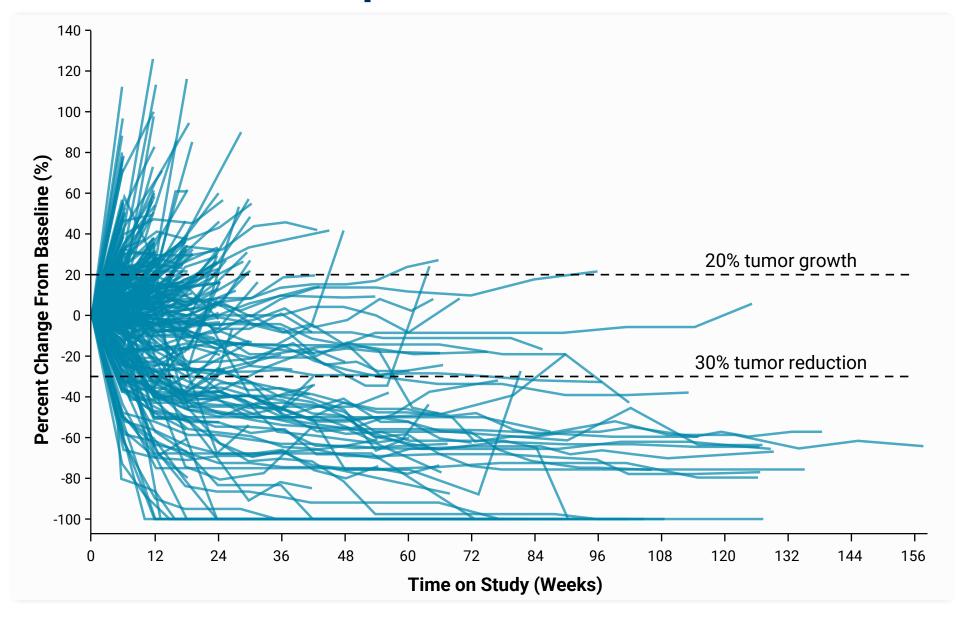
Efficacy Outcome	Efficacy Evaluable (N=339)		
Confirmed ORR, %	17%		
n, 95% CI	58, 13-22		
BOR, n (%)			
CR	7 (2)		
PR	51 (15)		
SD	164 (48)		
PD	117 (35)		
Median DOR, months	14.6		
95% CI	9.7-NR		
DCR at 6 weeks, %	66%		
n, 95% CI	222, 60-71		
CBR at 24 weeks, %	26%		
n, 95% CI	89, 22–31		

ORR consistent by dose:

- 1 mg/kg: 17% ORR (95% CI, 12-23; n=33/192)
- 2 mg/kg: 17% ORR (95% CI, 11–24; n=25/147)

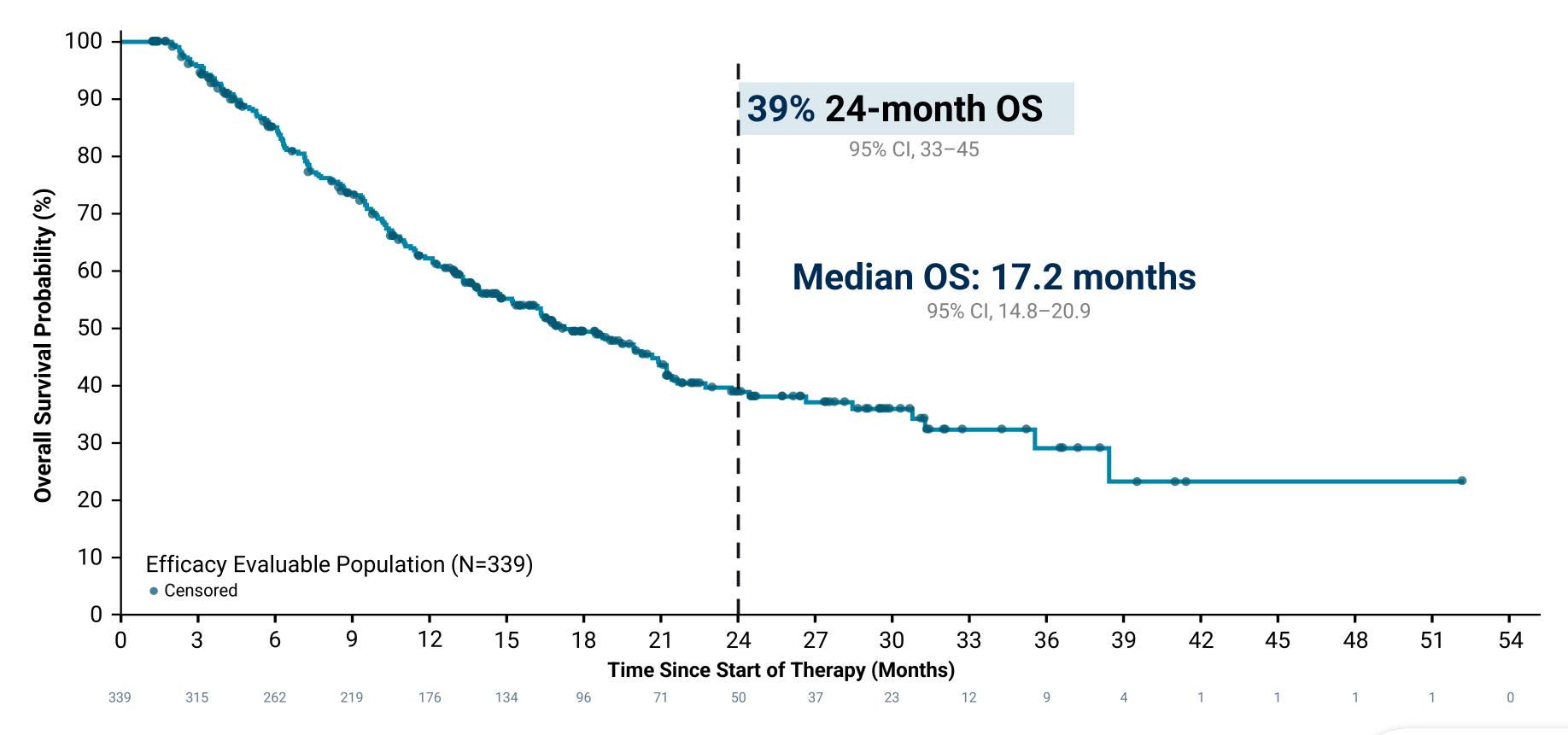

Median follow-up was 13.0 months (range, 1.3–53.3)

Data cutoff: 13-MAR-2025. Per investigator assessment in efficacy evaluable set (N=339; participants who received \geq 1 post-baseline 6-week imaging scan). CBR, clinical benefit rate (CR, PR, or SD \geq 24 weeks); DCR, disease control rate (CR, PR, or SD \geq 6 weeks).



Clinical Benefit Beyond ORR

Best Overall Responses



Responses Over Time

Overall Survival

Data cutoff: 13-MAR-2025. Efficacy evaluable set (N=339; participants who received ≥1 post-baseline 6-week imaging scan).

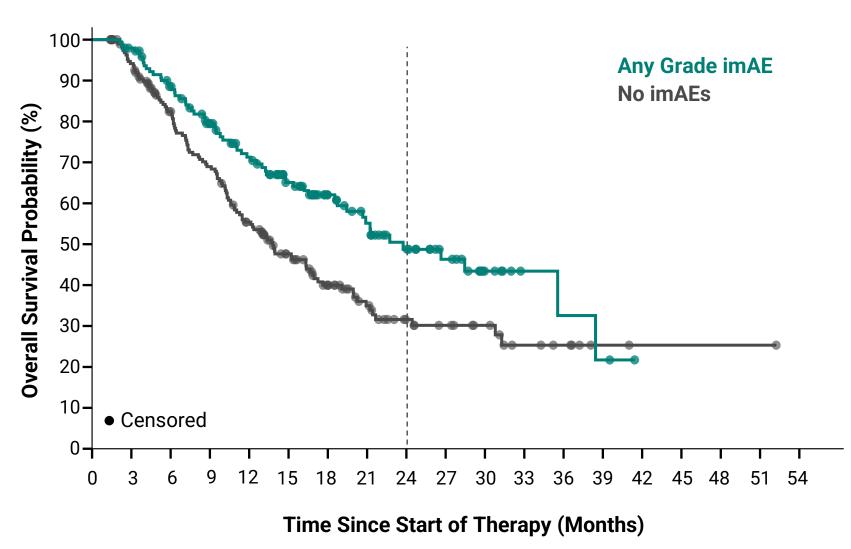
Safety Overview

Safety event, n (%)		g/kg 228)		g/kg 183)		erall 411)
Any grade TRAE	194 (85)		157 (86)		351 (85)	
Grade ≥3 TRAEs	63 (28)		69 (38)		132 (32)	
	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3
Any treatment-related imAEa,b	96 (42)	42 (18)	99 (54)	49 (27)	195 (47)	91 (22)
Most common (≥3%) treatment-related imAEs ^a						
Diarrhea/colitis ^c	61 (27)	22 (10)	73 (40)	34 (19)	134 (33)	56 (14)
Thyroid ^d	17 (8)	0	15 (8)	0	32 (8)	0
Hepatitise	6 (3)	2 (1)	13 (7)	8 (4)	19 (5)	10 (2)
Skin ^f	4 (2)	2 (1)	9 (5)	3 (2)	13 (3)	5 (1)
Pneumonitis ^g	5 (2)	3 (1)	6 (3)	2 (1)	11 (3)	5 (1)

- No new safety signals were observed
- The most common imAEs were GI-related, which were reversible
- There was a low incidence of visceral toxicities outside the GI tract
- No treatment-related deaths were observed (grade 5)

Data cutoff: 13-MAR-2025. Safety analysis set (N=411; participants who received ≥1 dose of study drug).

aimAEs were medically adjudicated. bGrade 4 imAEs (n=1 each) of colitis (2 mg/kg group), autonomic neuropathy (1 mg/kg group), diabetic ketoacidosis (2 mg/kg group), and thrombocytopenia (1 mg/kg group) were reported; no other grade ≥4 imAEs occurred. cGrouped term that included preferred term events of autoimmune colitis, colitis, diarrhea, duodenitis, entericis, and immune-mediated enterocolitis. dGrouped term that included preferred term events of blood thyroid stimulating hormone increased, hyperthyroidism, hypothyroidism, immune-mediated thyroiditis, and thyroiditis, eGrouped term that included preferred term events of AST increased, autoimmune hepatitis, blood alkaline phosphatase increased, and immune-mediated hepatitis. fGrouped term that included preferred term events of immune-mediated dermatitis, lichen sclerosus, linear IgA disease, rash, rash erythematous, and rash maculo-papular that were treated systemically. gGrouped term that included preferred term events of immune-mediated lung disease, and pneumonitis.


Michael S. Gordon, MD, FASCO

Survival Benefit Was Observed with imAEs

Within the first 12 weeks of treatment

Efficacy outcome	No imAEs n=195	Any Grade imAE n=144		
Confirmed ORR, % n, 95% CI	16% 31, 11-22	19% 27, 13-26		
Median DOR, months 95% CI	12.3 4.2-NR	14.6 9.8-NR		
CBR at 24 weeks, % n, 95% CI	25% 48, 19–31	29% 41, 21–37		
Median OS, months 95% CI	13.8 11.3–16.9	23.8 18.7–38.4		
24-month OS, % 95% CI	32% 24-40	49% 38-59		

Participants with or without imAEs during first 12 weeks of treatment

None 195 176 142 118 91 67 48 38 28 19 9 4 3 2 0

Data cutoff: 13-MAR-2025. Among the efficacy evaluable set (N=339; participants who received ≥1 post-baseline 6-week imaging scan).

Clinical Benefit Was Observed Irrespective of Liver Metastases or Prior I-O Exposure

	Liver metastases status		Prior I-	O status
	Active LM	No Active LM	I-O R/R	I-O Naïve
Efficacy outcome	n=101	n=238	n=109	n=230
Confirmed ORR, % n, 95% CI	13% 13, 7–21	19% 45, 14–25		
Median DOR, months 95% CI	9.8 2.8-NR	16.6 7.3-NR		
CBR at 24 weeks, % n, 95% CI	21% 21, 13-30	29% 68, 23–35		
Median OS, months 95% CI	11.5 9.8–17.0	20.7 16.4-24.4		
24-month OS, % 95% CI	29% 18-40	43% 35-51		

Clinical Benefit Was Observed Irrespective of Liver Metastases or Prior I-O Exposure

	Liver metastases status		Prior I-	O status
	Active LM	No Active LM	I-0 R/R	I-O Naïve
Efficacy outcome	n=101	n=238	n=109	n=230
Confirmed ORR, % n, 95% CI	13% 13, 7–21	19% 45, 14–25	12% 13, 7–20	20% 45, 15–25
Median DOR, months 95% CI	9.8 2.8-NR	16.6 7.3-NR	12.3 2.9-NR	16.6 7.3-NR
CBR at 24 weeks, % n, 95% CI	21% 21, 13-30	29% 68, 23–35	21% 23, 14-30	29% 66, 23–35
Median OS, months 95% CI	11.5 9.8–17.0	20.7 16.4–24.4	12.4 10.4–16.7	20.9 16.5–24.4
24-month OS, % 95% CI	29% 18-40	43% 35–51	31% 21-42	42% 34–50

Conclusions

BOT+BAL demonstrated notable overall survival with 2-year survival plateaus, supported by deep, durable responses and prolonged stable disease in a variety of refractory solid tumors

- Tumor types included MSS mCRC, sarcoma, ovarian, PD-1 R/R NSCLC, and PD-(L)1 R/R HCC
- Efficacy was similar across doses, with improved safety at BOT 1 mg/kg
- Occurrence of imAEs was associated with survival benefit
- Clinical benefit was evident irrespective of the presence or absence of liver metastases and prior I-O status
- No new safety signals were observed outside of the I-O class and there were no treatment-related deaths

These findings in late-stage patients across tumor types complement emerging pan-tumor data in the neoadjuvant setting¹

Acknowledgements

C-800-01 is sponsored (and funded) by Agenus Inc.

The authors would like to thank the patients and their families for participating in the C-800-01 trial, as well as the trial coordinators and investigators for their contributions.

View Agenus Publications

Copies of this presentation obtained through QR code are for personal use only and may not be reproduced without written permission of the authors

Abbreviations

ALT, alanine aminotransferase

AST, aspartate aminotransferase

APC, antigen presenting cell

BAL, balstilimab

BOR, best overall response

BOT, botensilimab

CBR, clinical benefit rate (CR, PR, or SD

≥24 weeks)

CI, confidence interval

CR, complete response

CTLA-4, cytotoxic T-lymphocyte associated

protein-4

DCR, disease control rate (CR, PR, or SD ≥6 weeks)

Fo

DLT, dose-limiting toxicity **DOR**, duration of response

ECOG, Eastern Cooperative Oncology Group

Fc, fragment crystallizable

GI, gastrointestinal

HCC, hepatocellular carcinoma

IgA, immunoglobulin a

imAE, immune-mediated adverse event

ICI, immune checkpoint inhibitor

I-O, immuno-oncology

LM, liver metastases

mAb, monoclonal antibody

mCRC, metastatic colorectal cancer

MSS, microsatellite stable

NR, not reached

NSCLC, non-small cell lung cancer

ORR, objective response rate

OS, overall survival

PFS, progression-free survival

PD, progressive disease

PD-1, programmed cell death protein 1

PD-L1, programmed death ligand 1

PR, partial response

PS, performance status

Q[X]W, every X weeks

R/R, relapsed/refractory

SD, stable disease

TRAE, treatment-related adverse event

