Efficacy and safety of balstilimab with or without zalifrelimab in recurrent cervical cancer: Results from the global phase 2 RaPiDs trial (GOG-3028)

Poster # 1164P

David M. O'Malley, MD1, Christina Oppermann, MD2, Manuel Magallanes-Maciel, MD3, Jorge Luis Martinez-Rodriquez, MD4, Andreia Cristina De Melo, MD, PhD, MBA5, Casey Cosgrove, MD1, Michael A. Gold6, Antonio Santillan-Gomez, MD, MBA, FACOG7, Allex Jardim da Fonseca, MD, PhD8, Fabio Andre Franke, MD9, Paul Nowicki, MD10, Carlos Eduardo Paiva, MD, PhD11, Lyndsay Willmott MD12, Glaucio Antonio Bertollo, MD13, Vanessa Bermudez, MD14, Ritu Salani, MD15, Jayanthi Lea, MD16, Wei Wu, MS17, Steven J. O'Day, MD17, Charles Leath, MD18

¹The Ohio State University Wexner Medical Center, Columbus, OH USA; ²Hospital Mãe de Deus, Porto Alegre, Brazil; ³Centro Oncologico Internacional - Ciudad de Mexico; ⁴Filios Alta Medicina, Monterrey, Mexico; ⁵Instituto Nacional de Cancer - Hospital do Cancer II, Rio de Janeiro, Brazil; ⁵Oklahoma Cancer Specialists and Research Institute, Tulsa, OK, USA; 7Texas Oncology - San Antonio Medical Center, San Antonio, TX, USA; 8Centro Oncologico de Roraima, Mecejana, Brazil; 9Centro de Pesquisa Clínica em Oncologia, lijui, Brazil; 10Baptist MD Anderson Cancer Center, Jacksonville, FL, USA; 11Hospital de Câncer de Barretos - Fundação Pio XII, Barretos, Brazil; 12Arizona Center for Cancer Care, Phoenix, AZ, USA; 13 Hospital Santa Rita, São Paulo, Brazil; 14 Clinica MonteSur, Santiago de Surco, Peru; 15 University of California Los Angeles, Women's Health Clinical Research Unit, Los Angeles, Women's Health Clinical Re

Background

- Patients with recurrent and/or metastatic cervical cancer have a poor prognosis, and effective second-line treatments for advanced relapsed disease are lacking¹
- Immunotherapy represents a promising therapeutic approach in this setting²
- PD-(L)1 and CTLA-4 inhibitors are agents of interest
- Balstilimab (BAL; anti-PD-1 monoclonal antibody) showed single-agent clinical activity and tolerability in previously-treated patients with metastatic, persistent, or recurrent cervical cancer^{3,4}
- Zalifrelimab (ZAL; anti-CTLA-4 monoclonal antibody) potentiated the activity of BAL in advanced cervical cancer, leading to activity irrespective of PD-L1 status or histology⁴
- We present findings from the phase 2 RaPiDS trial evaluating BAL ± ZAL in patients with advanced cervical cancer and progression after first-line platinum-based chemotherapy^{5,6}

RaPiDS Study Design (N=212)

NCT03894215 (GOG-3028/C-750-01): A 2-Arm, Randomized, Non-comparative, Phase 2 Trial of BAL (anti-PD-1) as a Monotherapy or Combination Therapy with ZAL (anti-CTLA-4) or with Placebo in Women with Recurrent Cervical Cancer (Second Line); RaPiDS Trial^{5,6}

Key Eligibility Treatment (up to 2 years) Recurrent/persistent/metastatic cervical cancer BAL **BAL+PBO**: Q3W 300 mg One prior platinum-based regimen 106 Patients 212 Patients Randomized **Study Endpoints Enrolled** 1:1 **BAL+ZAL**: ZAL or PBO Primary: ORR by BICR per RECIST v1.1

BAL+ZAL

Q6W 1 mg/kg

Data Collection

- Data cutoff date: 16-SEP-2024
- PD-L1 expression analysis prior to treatment
- Imaging every 6 weeks for up to 2 years
- Intent-to-treat population: All randomized patients with measurable disease at baseline (demographics and overall efficacy endpoints)
- Safety population: All randomized patients who received ≥1 dose of study drug (safety endpoints)

Results

Efficacy, Continued

• Secondary: TEAEs, DORa, DCRa, PFSa, and OS

BAL+PBO

^aBy BICR and investigator per RECIST v1.1

Patient Characteristics BAL+PBO BAL+ZAL n=106 n=106 Characteristic Median (range) 46 (25-79) 50 (25-80) 69 (65) 69 (65) Black or African 6 (6) 7 (7) American Race, n (%) Asian 2 (2) 5 (5) Other/not reported 29 (27) 25 (24) Ethnicity, n (%) 59 (56)a 56 (53) Hispanic or Latino 46 (43) 49 (46) ECOG PS, n (%)^t 58 (55) 56 (53) 1 (1) Squamous cell 75 (71) 66 (62) carcinoma Tumor histology, n (%) 20 (19) 34 (32) Adenocarcinoma 9 (9) Adenosquamous 4 (4) 68 (65) 54 (51) PD-L1 status, n (%) Negative 25 (24) 40 (38) Unknown 12 (11) 12 (11) Central pelvic recurrence, n (%) Yes 18 (17) 17 (16) 90 (85) 91 (86) Radiotherapy Platinum 106 (100) 106 (100) Prior therapies, n (%) 98 (93) 91 (86) Taxane Bevacizumab 41 (39) 41 (39) 38 (36) 38 (36) Lungs Distant lymph nodes 36 (34) 37 (35) Metastases at screening, n (%) 17 (16) 18 (17) 8 (8) 9 (9)

Table 1. Demographics and Baseline Characteristics. aTwo patients in the BAL+ZAL arm did not report ethnicity. bOne patient in each treatment arm was missing ECOG PS data.

140

Efficacy

	BICR		Investigator Assessed	
	BAL+PBO	BAL+ZAL	BAL+PBO	BAL+ZAL
Efficacy Endpoint	n=106	n=106	n=106	n=106
Confirmed ORR, %	26%	24%	15%	24%
n, 95% CI	27, 18-35	25, 17-33	16, 10-23	25, 17-33
CR, n (%)	9 (9)	8 (8)	5 (5)	5 (5)
PR, n (%)	18 (17)	17 (16)	11 (10)	20 (19)
SD, n (%)	39 (37)	45 (43)	49 (46)	40 (38)
PD, n (%)	34 (32)	30 (28)	34 (32)	36 (34)
NE/no data, n (%)	6 (6)	6 (6)	7 (7)	5 (5)
DCR, %	62%	66%	61%	60%
n, 95% CI	66, 53-71	70, 57-74	65, 52-70	64, 51-69
Median DOR, months (95% CI)	NR (5.6-NR)	23.2 (11.0-NR)	NR (NR-NR)	23.2 (6.9-29.0)
18-month DOR, % (95% CI)	61 (36-78)	64 (36-83)	80 (51-93)	58 (35-76)
Median PFS, months (95% CI)	4.1 (2.8-5.2)	4.2 (2.8-5.6)	2.9 (2.7-4.2)	4.1 (2.8-4.8)
18-month PFS, % (95% CI)	21 (13-31)	24 (15-34)	18 (10-26)	18 (11–26)

Table 2. Efficacy by BICR and Investigator.

^aAmong all randomized patients with post-baseline tumor assessment

(n=106) Figure 1. Best Overall Response per BICR in Patients Treated with (A) BAL+PBO or (B) BAL+ZAL. **BAL+PBO BAL+ZAL BAL+PBO BAL+ZAL** Efficacy Endpoint n=106 n=106 Median OS, months, 15.0 13.5 95% CI 9.9 - 20.49.0 - 19.318-month OS. % 44 95% CI 33-54 33-53 10.9 Median follow-up. 9.9 months, range 0.5 - 51.60.5-61.9 Time Since Start of Therapy (Months) Table 3 and Figure 2. Overall Survival.

Efficacy: PD-L1 Status Subgroups^a

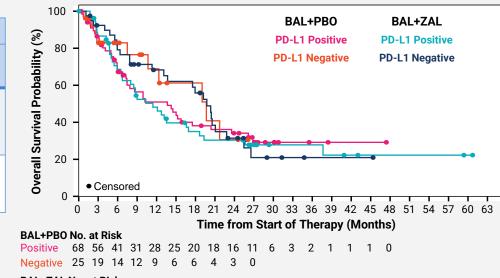

	PD-L1 Positive		PD-L1 Negative	
	BAL+PBO	BAL+ZAL	BAL+PBO	BAL+ZAL
Efficacy Endpoint	n=68	n=54	n=25	n=40
BICR				
Confirmed ORR, %	25%	24%	20%	23%
n, 95% CI	17, 17–38	13, 15–38	5, 9-41	9, 13-38
CR, n (%)	6 (9)	6 (11)	1 (4)	1 (3)
PR, n (%)	11 (16)	7 (13)	4 (16)	8 (20)
Median DOR, months (95% CI)	NR (4.3-NR)	22.8 (4.4-NR)	5.6 (2.8-NR)	23.2 (2.8-NR)
Median PFS, months (95% CI)	3.4 (1.4-5.1)	2.8 (1.5-5.6)	3.0 (1.4-5.8)	5.5 (4.0-10.9)
Investigator Assessed				
Confirmed ORR, %	15%	26%	8%	20%
n, 95% CI	10, 9-27	14, 17-40	2, 2-27	8, 11–36
CR, n (%)	3 (4)	3 (6)	1 (4)	1 (3)
PR, n (%)	7 (10)	11 (20)	1 (4)	7 (18)
Median DOR, months (95% CI)	NR (2.4-NR)	26.3 (4.2-NR)	NR (NR-NR)	23.2 (2.9-NR)
Median PFS, months (95% CI)	2.8 (1.4-4.2)	2.9 (1.7-4.2)	3.5 (1.4-6.9)	4.3 (2.8-5.6)

Table 4. Efficacy by PD-L1 Status.

	PD-L1 Positive		PD-L1 Negative	
Efficacy Endpoint	BAL+PBO	BAL+ZAL	BAL+PBO	BAL+ZAL
	n=68	n=54	n=25	n=40
Median OS, months, 95% CI	13.7 7.4–20.4	11.4 6.6–16.9	19.7 10.7–NR	19.7 13.1–22.8
18-month OS, %	38	35	61	56
95% CI	26-50	22-48	34-80	38-70

Table 5 and Figure 4. Overall Survival by PD-L1 Status.

≥87 days from randomization prior to data cutoff and who had ≥1 record in BICR adjudication accepted target lesion at screening.

Positive 54 45 34 26 23 18 15 13 13 9 5 5 5 4 3 2 2 2 2 1 0

Negative 40 35 30 25 22 20 18 11 8 4 3 2 1 1 1 1 0

Safety

	BAL+PBO	BAL+ZAL	Overall
n (%)	n=105	n=106	n=211
Any Grade >3 TRAE			
Related to ZAL or PBO	16 (15)	24 (23)	40 (19)
Related to BAL	16 (15)	23 (22)	39 (19)
Any AE leading to discontinuation			
ZAL or PBO	12 (11)	13 (12)	25 (12)
BAL	12 (11)	14 (13)	26 (12)
Immune-mediated TRAEs (>5%)			
Hyperthyroidism	7 (7)	2 (2)	9 (4)
Hypothyroidism	5 (5)	16 (15)	21 (10)
Diarrhea	13 (12)	16 (15)	29 (14)
Pruritis	3 (3)	9 (9)	12 (6)
Grade ≥3 immune-mediated TRAEs			
Related to ZAL or PBO	3 (3)	11 (10)	14 (7)
Related to BAL	3 (3)	11 (10)	14 (7)

Table 6. Safety Overview.

- No new safety signals
- No treatment-related deaths (grade 5)

106 Patients

CONCLUSIONS

- In this randomized, blinded, 2-arm, non-comparative phase 2 trial enrolling patients with recurrent/metastatic cervical cancer regardless of PD-L1 status, anti-tumor responses and survival signals were observed with BAL+PBO and BAL+ZAL highlighting meaningful clinical activity
- Investigator-assessed ORR was numerically higher with BAL+ZAL than BAL+PBO, but discordance between investigator and BICR assessments limits conclusions about ZAL's incremental benefit
- Median overall survival for PD-L1-negative patients showed improvement compared with PD-L1-positive patients across both arms
- For CTLA-4/PD-1 doublet therapy, BAL+ZAL showed higher rates of grade ≥3 treatment-related and immune-mediated AEs than BAL+PBO; however, no new safety signals were observed in line with prior experience^{3,4}

These data support continued development of balstilimab for treatment of recurrent/metastatic cervical cancer irrespective of PD-L1 status

Disclosures for DMO: AbbVie, AstraZeneca, Agenus Inc., Corcept Therapeutics, GlaxoSmithKline, GOG Foundation, Merck & Co, Merck Sharp & Dohme Corp, Regeneron Pharmaceuticals, Verastem, Zentalis

Correspondence: David M. O'Malley, MD: domalley@gog.org

Acknowledgments Agenus Inc. funded and is the sponsor of this study. The authors would like to thank the patients and their families for participating in the RaPiDs (NCT03894215; GOG-3038; C-750-01) trial, as well as the trial coordinators and investigators for their contributions.

Abbreviations: AE, adverse event; BAL, balstilimab; BICR, blinded independent review committee BOT, botensilimab; CR, complete response; CTLA-4, cytotoxic T-lymphocyte associated protein-4; DCR, disease control rate (CR, PR, or SD ≥6 weeks); DOR, duration of response; ECOG, Eastern Cooperative Oncology Group; GOG, Gynecologic Oncology Group; NE, not evaluable; NR, not reached; ORR, objective response rate; OS, overall survival; PBO, placebo; PD, progressive disease; PD-1, programmed cell death protein 1; PD-L1, programmed death ligand 1; PFS, progression-free survival; PR, partial response; PS, performance status; Q[X]W, every X weeks; RECIST 1.1, Response Evaluation Criteria in Solid Tumors version 1.1; SD, stable disease; TEAEs, treatmentemergent adverse events; TRAEs, treatment-related adverse events; ZAL, zalifrelimab.

References: 1. Boussios, S et al. Crit Rev Oncol Hematol. 2016; 108:164-174. 2. Liu, Y et al. Front Pharmacol. 2019 10:65. 3. O'Malley, et al. Gynecol Oncol; 2021; 163:274-280. 4. O'Malley, et al. J Clin Oncol; 2021; 40:762-771. 5. O'Malley, et al. Future Oncol; 2021; 17:3433-3443. 6. ClinicalTrials.gov identifier: NCT03894215. Updated February 20, 2025. Accessed August 7, 2025. https://clinicaltrials.gov/ct2/show/NCT03894215.

View Agenus Publications

for personal use only and may not be reproduced without written permission of the authors.

Poster presented at the European Society for Medical Oncology Annual Meeting: October 17-21, 2025. Berlin, Germany.