

### WORLD CONGRESS ON Gastrointestinal Cancer



28 JUNE – 1 JULY 2023 Barcelona, Spain



Results from an expanded phase 1 trial of **botensilimab**, a multifunctional anti-CTLA-4, plus balstilimab (anti-PD-1) for metastatic heavily pretreated microsatellite stable colorectal cancer

Andrea J. Bullock, MD, MPH<sup>1</sup>, Marwan G. Fakih, MD<sup>2</sup>, Michael S. Gordon, MD<sup>3</sup>, Apostolia M. Tsimberidou, MD, PhD<sup>4</sup>, Anthony B. El-Khoueiry, MD<sup>5</sup>, Breelyn A. Wilky, MD<sup>6</sup>, Agustin Pimentel, MD<sup>7</sup>, Kim A. Margolin, MD, FACP, FASCO<sup>8</sup>, Daruka Mahadevan, MD, PhD<sup>9</sup>, Ani S. Balmanoukian, MD<sup>10</sup>, Rachel E. Sanborn, MD<sup>11</sup>, Gary K. Schwartz, MD<sup>12</sup>, Ghassan K. Abou-Alfa, MD, MBA<sup>13,14,15</sup>, Bruno Bockorny, MD<sup>1</sup>, Justin C. Moser, MD<sup>3</sup>, Sunil Sharma, MD, FACP, MBA<sup>3</sup>, Joseph E. Grossman, MD<sup>16</sup>, Katherine Rosenthal, RN, MSN, OCN, CCRP<sup>16</sup>, Steven J. O'Day, MD<sup>16</sup>, Heinz-Josef Lenz, MD, FACP<sup>5</sup>, Benjamin L. Schlechter, MD<sup>17</sup>

<sup>1</sup>Beth Israel Deaconess Medical Center, Boston, MA, USA; <sup>2</sup>City of Hope Comprehensive Cancer Center, Duarte, CA, USA; <sup>3</sup>HonorHealth Research and Innovation Institute, Scottsdale, AZ, USA; <sup>4</sup>The University of Texas MD Anderson Cancer Center, Houston, TX, USA; <sup>5</sup>University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA; <sup>6</sup>University of Colorado Cancer Center, Aurora, CO, USA; <sup>7</sup>Sylvester Comprehensive Cancer Center, University of Miami, FL, USA; <sup>8</sup>Providence Saint John's Cancer Institute, Santa Monica, CA, USA; <sup>9</sup>The University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA; <sup>10</sup>The Angeles Clinic and Research Institute, Los Angeles, CA, USA; <sup>11</sup>Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA; <sup>12</sup>Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA; <sup>13</sup>Memorial Sloan Kettering Cancer Center, New York, NY, USA; <sup>14</sup>Weill Cornell College at Cornell University, New York, NY, USA; <sup>15</sup>Trinity College Dublin, College Green, Dublin, Ireland; <sup>16</sup>Agenus Inc., Lexington, MA, USA; <sup>17</sup>Dana-Farber Cancer Institute, Boston, MA, USA



#### DISCLOSURES

Andrea J. Bullock

Consulting fees: Exelixis, Panovance, Oncolytics



The content of this presentation is the property of Andrea J. Bullock, licensed by ESMO Gl. Permission is required for reuse.

## **BOTENSILIMAB IS A NOVEL INNATE & ADAPTIVE IMMUNE ACTIVATOR**

Expanding the Reach of Immunotherapy

#### botensilimab A Multifunctional Fc-enhanced Anti-CTLA-4 APC NK APC activation FcyRIIIA FcvRIIIA Fc-enhanced +++ **Fc-enhanced** Stronger immune botensilimab botensilimab Treg depletion svnapse CTLA-4 CTLA-4 T cell primina. activation & memory T Cell Treg

#### Driving Activity in Cold or I-O Refractory Tumors<sup>1-4</sup>

- **Enhanced** T cell priming, expansion, memory<sup>5,6</sup>
- Enhanced frequency of APCs
- Enhanced Treg depletion
- **Reduced** complement mediated toxicity

1. Wilky B. SITC 2022 Annual Meeting. Oral #778. 2. Wilky B, et al. Oral Presentation at CTOS 2022. Vancouver, CA. #1294633. 3. El-Khoueiry A, et al. Oral Presentation at ASCO GI 2023. San Francisco, CA, USA. Rapid Oral #LBA8. 4. Bockorny B, et al. Scientific Plenary Presentation at SGO 2023. Tampa, Florida. #2. 5. Waight et al. *Cancer Cell*. 2018;33(6): 1033-1047. 6. Delepine C, et al. Poster Presentation at SITC 2022. Boston, MA, USA. #470.

### **BALSTILIMAB IS A CLINICALLY VALIDATED PD-1 INHIBITOR**



#### A Highly Active Anti-PD-1 mAb<sup>1,2</sup>

- **Complete blocker** of PD-1- PD-L1/2 interactions
- Enhanced T cell activation and effector function



### STUDY DESIGN (C-800-01): NON-MSI-H CRC COHORT

NCT03860272: First-in-human trial of **botensilimab (bot) ± balstilimab (bal)** in patients with advanced cancer<sup>1</sup>

#### Key Eligibility

- Refractory Metastatic CRC
- MSS by local assessment
- Prior I-O allowed

#### **Study Endpoints**

- Efficacy: ORR, DCR, DOR, PFS, OS
- Safety: AEs



### **PATIENT DISPOSITION**

Intent-to-treat Population (ITT; All Treated Patients) Safety Evaluable 101 Non-MSI-H patients received ≥1 dose

(1 or 2 mg/kg botensilimab Q6W + 3 mg/kg balstilimab Q2W)
 77 with no active liver metastases
 24 with active liver metastases

Efficacy Evaluable (EE) 87 had ≥1 post-baseline 6-week imaging scan 69 with no active liver metastases 18 with active liver metastases 14 patients (including 6 with active liver metastases) did not receive ≥1 post-baseline 6-week imaging scan:
9 early progression
4 withdrew consent
1 related AE



#### **PATIENT CHARACTERISTICS**

|                            | ITT Population<br>N=101 |                               | ITT Population<br>N=101 |
|----------------------------|-------------------------|-------------------------------|-------------------------|
| Age, median (range)        | 54 (25-82)              | Prior lines of therapy, n (%) |                         |
| Sex, n (%)                 |                         | Median (range) <sup>+</sup>   | 4 (1-10)                |
| Male                       | 45 (45)                 | ≥3                            | 73 (72)                 |
| Female                     | 56 (55)                 | Prior I-O, n (%)*‡            | 25 (25)                 |
| ECOG PS at baseline, n (%) |                         | TMB >10, mut/Mb, n/N (%)*     | 3/76 (4)                |
| 0                          | 44 (44)                 | RAS mutation, n/N (%)*        | 58/100 (58)             |
| 1                          | 57 (56)                 | BRAF mutation, n/N (%)*       | 3/71 (4)                |
| Primary Site*              |                         |                               |                         |

\*Per internal medical review.

Colon

Rectal

<sup>+</sup>Excludes two patients with unknown prior treatments.

‡Includes prior PD-1 or CTLA-4 inhibitors, anti-CD137 monoclonal antibodies, and other immune checkpoint inhibitors.

64 (64)

37 (36)

### **DEEP AND DURABLE OBJECTIVE RESPONSES**

|                                | All EE<br>n=87* | No Active Liver Mets EE<br>n=69 <sup>+</sup> | Active Liver Mets EE<br>n=18 <sup>‡</sup> |
|--------------------------------|-----------------|----------------------------------------------|-------------------------------------------|
| Confirmed ORR, n % (95% CI)    | 18% (11-28)     | 23% (14–35)                                  | 0% (0-19)                                 |
| BOR, n (%)                     |                 |                                              |                                           |
| CR                             | 1 (1)           | 1 (1)                                        | 0                                         |
| PR                             | 15 (17)         | 15 (22)                                      | 0                                         |
| SD                             | 45 (52)         | 39 (57)                                      | 6 (33)                                    |
| PD                             | 26 (30)         | 14 (20)                                      | 12 (67)                                   |
| DCR (CR + PR + SD), % (95% Cl) | 70% (59-80)     | 80% (68-88)                                  | 33% (13-59)                               |
| 12-month OS, % (95% CI)        | 62% (49-73)     | 74% (59-84)                                  | 30% (11-52)                               |
| Ongoing responses§             | 11/16 (69%)     |                                              | 0                                         |

\*Excludes patients with unconfirmed responses, among them one with a response in lung lesions who then became non-evaluable after a hemicolectomy which showed a pathologic CR, and another patient with a -60% reduction through week 60 who had a perisplenic nodule retrospectively identified as a new lesion at week 18. <sup>†</sup>In the ITT population with no active liver metastases (n=77), ORR was 21% (95% CI, 12–32) and DCR was 71% (95% CI, 60–81). <sup>‡</sup>In the ITT population with active liver metastases (n=24), ORR was 0% (95% CI, 0–14) and DCR was 25% (95% CI, 10–47). <sup>§</sup>Median DOR is immature as 11/16 (69%) patients are ongoing.

#### **DEEP OBJECTIVE RESPONSES**

No Active Liver Metastases (Efficacy Evaluable, n=69\*)



Data cutoff: 26-MAY-2023

\*69 patients were evaluable with ≥1 post-baseline scan. One patient out of the 69 is not included in the waterfall plot because RECIST was recorded as SD but no percent

change was recorded as of the data cutoff.

<sup>†</sup>Confirmed response (CR or PR).

#### **DURABLE OBJECTIVE RESPONSES**

No Active Liver Metastases (Efficacy Evaluable, n=69\*)



Data cutoff: 26-MAY-2023

\*69 patients were evaluable with ≥1 post-baseline scan. One patient out of the 69 is not included in the spider plot because RECIST was recorded as SD but no percent change was recorded as of the data cutoff.



#### SAFETY

All TEAEs in  $\geq$ 15% of the ITT Population (N=101)

| TEAE, n (%)                        | All Grades | Grade 3 | Grade 4 |
|------------------------------------|------------|---------|---------|
| Any*                               | 101 (100)  | 58 (57) | 4 (4)   |
| Gastrointestinal                   |            |         |         |
| Diarrhea                           | 50 (50)    | 8 (8)   | 0       |
| Nausea                             | 41 (41)    | 5 (5)   | 0       |
| Vomiting                           | 30 (30)    | 4 (4)   | 0       |
| Colitis                            | 28 (28)    | 13 (13) | 1 (1)   |
| Abdominal pain                     | 27 (27)    | 3 (3)   | 0       |
| Constipation                       | 15 (15)    | 0       | 0       |
| Constitutional                     |            |         |         |
| Fatigue                            | 46 (46)    | 3 (3)   | 0       |
| Decreased appetite                 | 44 (44)    | 3 (3)   | 0       |
| Pyrexia                            | 30 (30)    | 4 (4)   | 0       |
| Chills                             | 28 (28)    | 0       | 0       |
| Headache                           | 22 (22)    | 2 (2)   | 0       |
| Weight decreased                   | 16 (16)    | 0       | 0       |
| Peripheral edema                   | 15 (15)    | 0       | 0       |
| Hepatic                            |            |         |         |
| Alanine aminotransferase increased | 20 (20)    | 2 (2)   | 0       |
| Aspartate aminotransferase         | 19 (19)    | 2(2)    | 1 (1)   |
| increased                          | 19(19)     |         | 1 (1)   |
| Blood alkaline phosphatase         | 16 (16)    | 3 (3)   | 0       |
| increased                          | 10(10)     | 5(5)    | U       |

| TEAE, n (%)         | All Grades | Grade 3 | Grade 4 |
|---------------------|------------|---------|---------|
| Musculoskeletal     |            |         |         |
| Arthralgia          | 24 (24)    | 1 (1)   | 0       |
| Skin                |            |         |         |
| Pruritus            | 24 (24)    | 0       | 0       |
| Rash maculo-papular | 20 (20)    | 0       | 0       |
| Blood               |            |         |         |
| Anemia              | 29 (29)    | 12 (12) | 0       |
| Respiratory         |            |         |         |
| Cough               | 26 (26)    | 0       | 0       |
| Dyspnea             | 24 (24)    | 4 (4)   | 0       |
| Metabolism          |            |         |         |
| Hypokalemia         | 23 (23)    | 2 (2)   | 1 (1)   |
| Hyponatremia        | 20 (20)    | 3 (3)   | 0       |
| Dehydration         | 17 (17)    | 2 (2)   | 0       |
| Hypoalbuminemia     | 17 (17)    | 0       | 0       |
| Hypophosphatemia    | 16 (16)    | 0       | 0       |

#### SAFETY

#### All TRAEs in $\geq$ 15% of the ITT Population (N=101)

| TRAE, n (%)                        | All Grades | Grade 3 | Grade 4 |
|------------------------------------|------------|---------|---------|
| Any*                               | 89 (88)    | 37 (37) | 2 (2)   |
| Gastrointestinal                   |            |         |         |
| Immune-mediated diarrhea/colitis*  | 40 (40)    | 16 (16) | 1 (1)   |
| Nausea                             | 20 (20)    | 2 (2)   | 0       |
| Constitutional                     |            |         |         |
| Fatigue                            | 32 (32)    | 3 (3)   | 0       |
| Decreased appetite                 | 27 (27)    | 0       | 0       |
| Pyrexia                            | 25 (25)    | 4 (4)   | 0       |
| Chills                             | 24 (24)    | 0       | 0       |
| Hepatic                            |            |         |         |
| Alanine aminotransferase increased | 16 (16)    | 2 (2)   | 0       |
| Musculoskeletal                    |            |         |         |
| Arthralgia                         | 18 (18)    | 1 (1)   | 0       |
| Skin                               |            |         |         |
| Pruritus                           | 18 (18)    | 0       | 0       |
| Rash maculo-papular                | 15 (15)    | 0       | 0       |

\*Investigator reported as immune-mediated or the patient received steroids and/or a TNF-a inhibitor.

- No new safety signals
- Safety in CRC consistent across tumor types
- 33% discontinued due to a TRAE
  - 33% bot
  - 17% bal
- No treatment-related deaths



### **CONCLUSIONS & FUTURE DIRECTIONS**

- Botensilimab is a multifunctional CTLA-4 antibody with broad activity in "cold" or I-O refractory tumors
- Botensilimab plus balstilimab continues to show deep and durable objective responses and notable overall survival compared to historical data in non-MSI-H CRC
- Enhanced overall survival noted across all subgroups, including those with or without active liver metastases
- Manageable safety profile with no new safety signals reported
- Global randomized phase 2 trial (NCT05608044) of botensilimab ± balstilimab (versus standard of care) in non-MSI-H CRC is ongoing



### ACKNOWLEDGEMENTS

Agenus Inc. funded and is the legal entity responsible for this study.

The authors would like to thank the patients and their families for participating in the C-800-01 study, as well as the trial coordinators and investigators for their contributions.

View Agenus Publications



#### **ABBREVIATIONS**

AE. adverse event APC, antigen presenting cell bal, balstilimab **BOR**, best overall response bot, botensilimab **BRAF**, v-raf murine sarcoma viral oncogene homolog B1 CI. confidence interval **CR**, complete response **CRC**, colorectal cancer CTLA-4, cytotoxic Tlymphocyte antigen-4 **DCR**, disease control rate **DOR**, duration of response ECOG, Eastern Cooperative **Oncology Group EE**, efficacy evaluable Fc, fragment crystallizable FcyRIIIA, fragment crystallizable gamma receptor IIIA F/U, follow-up H, high

IgG, immunoglobulin G I-O, immunotherapy **ITT**. intent-to-treat mAb, monoclonal antibody Mets. metastases MSI, microsatellite instability MSS. microsatellite stable NK. natural killer NR, not reached **ORR**, objective response rate **OS.** overall survival **PD**, progressive disease PD-1, programmed death receptor-1 PD-L1/2, programmed death-ligand 1/2 PFS, progression-free survival PR, partial response PS, performance status QXW, every X weeks RAS, rat sarcoma virus SD, stable disease SOC. standard of care TEAE, treatment-emergent adverse event TMB, tumor mutational burden TRAE, treatment-related adverse event **Treg**, regulatory T cell



# **Q&A Session**

