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Figure 1: Representation of VISION platform as an integrated tool to recapitulate tumor immune interactions allowing perturbations to interrogate
concepts and accelerate them to clinic.

Integrated discovery & development platform drives concepts to clinic
Agenus VISION Platform

Conclusions

• Agenus’ VISION platform combines deep in vitro profiling and AI-based approaches to predict clinical
outcomes, plus rational targets & combinations.

• We defined a predictive biomarker signature that outperforms standard PD-L1 IHC.
• We identified a potential mechanism underlying the effective combination of anti-PD1 and anti-TIGIT
antibodies in the clinic.

VISION T cell dysfunction signature correlates with Objective Response Rate in anti-
PD1/PDL1 treatment across indications

Figure 5: Correlation of Objective Response Rate of anti-PD1/PDL1 treatment in human tumors to A) Tumor Mutation Burden, B) Fraction of PD1 
high patients (fPD1), C) CD8+ T-Cell Abundance, D) VISION T cell dysfunction signature, and E) Bivariate Tumor Mutation Burden and VISION T cell 
dysfunction signature. 

F) Prediction of ORR for TCGA molecular subtypes using the bivariate model. TCGA indications were split into previously defined molecular subtypes 
(e.g. for BRCA - HER2, LumA, LumB, and basal) to validate correlations seen at the indication-level.

VISION deep-learning model identifies anti-PD1 responders in melanoma and cervical cancer

Figure 4: Development of a deep learning model to differentiate responders from non-responders in a population of anti-PD1 treated melanoma
patients. Melanoma was selected for initial training and validation due to the availability of public, clinically-annotated tumor RNA-seq datasets from
large numbers of patients (Hugo et al. (n=25) and Riaz et al. (n=43) ). Feature selection comprised of Agenus VISION T cell state signatures
combined with differentially expressed genes between the two groups. Data partition for training and validation was followed by modelling and
performance evaluation.

Figure 3: (Left Panel) Average response rate to anti-PD1 therapies. (Right Panel) Accuracy of predicting response to anti-PD1 on a per patient basis
using either PD-L1 IHC or Agenus’ VISION machine learning models using melanoma (Riaz et. Al and Hugo et. al) and cervical (Agenus C-550 and
C-700) patients treated with anti-PD1.
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VISION PLATFORM DEFINES RATIONAL COMBINATIONS
Single cell transcriptomics of T cells during early dysfunction identifies T cell subsets that 
respond to anti-PD1

Figure 6: A) Heatmap showing mean expression of select activation and dysfunction markers based on single cell RNA-sequencing across 14 T cell
clusters that are present during the early dysfunction state. (B) Violin plot depicting single cell expression levels for select dysfunction markers within
the activated PD1high subset.

Combination of PD-1 and TIGIT blockade enhanced T cell cytotoxicity of tumor cells relative to 
monotherapies 

Figure 7: A) Tumor killing capacity of anti-PD1 and co-blockade B) Tumor killing capacity of PD1 and anti-TIM3 co-blockade.

Hours

%
 k

ill
in

g

Isotype
anti-PD1
anti-TIGIT
Co-blockade

Enhanced cytotoxicity with a PD1-TIGIT co-blockade

Isotype
anti-PD1
anti-TIM3
Co-blockade

Hours

Donor 1 Donor 2 Donor 3 Donor 4 Donor 8

No benefit from PD1-TIM3 co-blockade over PD1 
mono-blockade

%
 k

ill
in

g

T cell dysfunction system drives CD8+ T cells to dysfunction through chronic cancer antigen 
exposure

Figure 2: Method for driving T cell dysfunction in vitro. T cell preparation: PBMCs were isolated from three healthy donors on a Ficoll gradient and
rested overnight. CD8+ T cells were isolated on magnetic beads, stimulated with CD3/CD28, transduced with NY-ESO-1 lentivirus, and expanded.
TCR expression was confirmed by flow cytometry. Cancer cell preparation: U251 MG cell lines were transduced with lentivirus encoding a fusion
protein of b2-microgobulin, HLA2-A2 and NY-ESO-1 or MART-1 peptide and selected on blasticidin. Antigen expression was confirmed with an NFAT
reporter system in Jurkat T cells. For co-culture: A fixed number of irradiated U251 MG cells were cultured for 24h. CD8+ T cells were added to
achieve the desired cancer:T cell ratio. The co-culture was monitored every 24h. If cancer cells were depleted, CD8+ T cells were transferred to a
fresh well of irradiated U251 MG cells and the remainder were collected for downstream analyses. If cancer cells were not depleted, media was
changed and reassessed the following day. Top Panel) Cytotoxicity kinetics as monitored by live cell fluorescence microscopy. Middle Panel)
Secreted effector molecules measured by Luminex Bead Array, normalized to the maximum signal per molecule. Bottom Panel) Transcriptomic
landscape of T cell dysfunction across antigen exposures.
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VISION PLATFORM PROVIDES CLINICAL INSIGHTS
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