
Figure 1. Chronic cancer antigen  exposure drives CD8+ T cell 
dysfunction in vitro

A) Method for driving T cell dysfunction in vitro. T cell preparation: PBMCs were isolated from three healthy 
donors on a Ficoll gradient and rested overnight. CD8+ T cells were isolated on magnetic beads, stimulated 
with CD3/CD28, transduced with NY-ESO-1 lentivirus, and expanded. TCR expression was confirmed by 
flow cytometry. Cancer cell preparation: U251 MG cell lines were transduced with lentivirus encoding a 
fusion protein of b2-microgobulin, HLA2-A2 and NY-ESO-1 or MART-1 peptide and selected on blasticidin. 
Antigen expression was confirmed with an NFAT reporter system in Jurkat T cells. For co-culture: A fixed 
number of irradiated U251 MG cells were cultured for 24h. CD8+ T cells were added to achieve the desired 
cancer:T cell ratio. The co-culture was monitored every 24h. If cancer cells were depleted, CD8+ T cells were 
transferred to a fresh well of irradiated U251 MG cells and the remainder were collected for downstream 
analyses. If cancer cells were not depleted, media was changed and reassessed the following day. B) 
Cytotoxicity kinetics as monitored by live cell fluorescence microscopy. C) Maximum cytotoxicity across 
four T cell : cancer cell ratios. D) Secreted effector molecules measured by Luminex Bead Array, normalized 
to the maximum signal per molecule. E) tSNE visualization of flow cytometry measurements for twelve 
proteins related to T cell differentiation and function. F) RNA expression for 11,108 differentially expressed 
genes. 

Figure 5. VISION gene signatures correlate with Objective 
Response Rate in anti-PD1/PDL1 treatment
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Correlation of Objective Response Rate of anti-PD1/PDL1 treatment in human tumors to A) Tumor Mutation 
Burden, B) Fraction of PD1 high patients, C) CD8+ T-Cell Abundance, D) Univariate Agenus VISION signature, 
E) Bivariate Tumor Mutation Burden and Agenus VISION signature  and F) Prediction of ORR by molecular 
subtypes using the bivariate model

Figure 6. A deep-learning model to differentiate responders of 
anti-PD1 treatment in melanoma
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Layout describing development of a deep learning model to differentiate responders from non-responders 
of anti-PD1 treated melanoma patients from Hugo et. al. and Riaz et. al. Feature selection comprised of 
differentially expressed genes between the two groups filtered by Agenus VISION T cell state signatures. 
Data partition for training and validation was followed by modelling and performance evaluation.

Figure 7. Evaluation of Agenus deep-learning model performance 
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Performance evaluation of the model A) Training and validation loss (top) and accuracy (bottom) B) ROC 
curve representing accuracy of the model with highest test accuracy of 90% in predicting responders and 
non-responders in melanoma patients treated with anti-PD1.

Figure 8. I-O target discovery and translational insight from deep, 
integrative profiling of the tumor:immune interface in vitro
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Background
Immune checkpoint blockade (ICB) elicits durable responses in some cancer patients, but 
novel targets and combination approaches are needed to address resistance and broaden 
clinical benefit. Agenus is addressing this need with our Virtual Systems for Immuno-Oncology 
(VISION) platform. VISION is based on a collection of in vitro ecosystems which we deeply and 
systematically interrogate to discover novel targets, optimize our therapies and design smarter 
clinical trials. Here, we present deep-learning model to predict response to anti-PD1 treatment 
in melanoma patients using disease relevant gene signatures acquired through VISION platform.

Agenus VISION platform supports smart, streamlined drug 
discovery and development
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Methods
We developed a long-term human co-culture system comprised of primary T cells and cancer 
cells that enables controlled differentiation of naïve T cells to effector, memory and dysfunctional 
states. We longitudinally monitored T cell effector functions, protein and RNA expression across 
states and single cells. We identified gene signatures associated with each state. Parallelly, 
bulk RNAseq data from a cohort of melanoma patients treated with anti-PD1 was used for 
training and testing a deep neural network to differentiate responders and non-responders. 
We used a combination of gene signatures acquired from differential gene expression analysis 
of responders vs non-responders with VISION T cell state signatures to create a feature set for 
training and testing the model.

Results
T cells in our system become activated and then gradually progress to a terminally dysfunctional 
state driven by multiple cancer antigen exposures. T cell cytotoxicity is maintained over several 
antigen exposures before sharply decreasing

whereas cytokine secretion begins to decrease with only one prior antigen exposure. The 
expression of known T cell regulators and novel factors is altered over the time course, with 
known factors reflecting previous observations in vivo. This physiologically relevant system 
becomes the basis of a deep learning approach to develop a classifier model to differentiate 
responders and non-responders. Using the Agenus VISION T cell state signatures, we are able 
to train a binary classifier with high accuracy.

Using Big Data and Machine Learning to 
Understand T cell Dysfunction in Human Tumors
Simarjot Pabla, Tenzing Khendu, Cailin Joyce, Benjamin Duckless, Andrew Basinski, Matthew Hancock, Jeremy Waight, Mariana Manrique, Jennifer Buell, Alex Duncan, 
David Savitsky, Lukasz Swiech, Thomas Horn, John Castle

Figure 3. Chronic cancer antigen exposure drives transcriptional signatures 
of activation and dysfunction in CD8+ T cells
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A) K-means cluster profiles, with mean cluster expression shown in red and individual genes in grey. B) 
Normalized log2 RNA expression for selected genes. Error bars = SEM across three donors. 

Figure 4. Chronic cancer antigen exposure ultimately drives CD8+ 
T cells to a anti-PD-1 refractory state
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Correlation of Objective Response Rate of anti-PD1/PDL1 treatment in human tumors to A) Tumor Mutation 
Burden, B) Fraction of PD1 high patients, C) CD8+ T-Cell Abundance, D) Univariate Agenus VISION signature, 
E) Bivariate Tumor Mutation Burden and Agenus VISION signature  and F) Prediction of ORR by molecular 
subtypes using the bivariate model 
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These findings demonstrate the potential of VISION systems to deeply interrogate response 
and resistance to current and next-generation I-O therapies. In this case, using deep 
learning neural networks and a physiologically relevant in-vitro T cell exhaustion system, 
we have defined a predictive biomarker signature for PD-1 response in melanoma. With a 
growing repertoire of virtual systems and capabilities, VISION is poised to advance Agenus’ 
multi-faceted approach to fighting cancer with immunotherapy.
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Figure 2. Chronic cancer antigen exposure drives expression of 
activation and dysfunction markers on CD8+ T cells
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