

Agenus Inc. or subsidiary thereof (current c former employee), Lexington, MA 02421, USA

AGEN2373 is a CD137 agonist antibody designed to leverage optimal CD137 and FcyR co-targeting to promote antitumor immunologic effects

Claire Galand, PhD¹, Vignesh Venkatraman¹, Marilyn Marques¹, Nishanth Ganeshbabu¹, James Strauss, MD², Richard D Carvajal, MD³, Min Lim¹, Benjamin Morin, PhD¹, Olga Ignatovich, PhD¹, Mark A. Findeis, PhD¹, Dennis Underwood, PhD¹, Marc van Dijk, PhD¹, Irina Shapiro, PhD¹, Lernik Ohanjanian MD¹, Jennifer Buell, PhD¹, Dhan Chand, PhD¹, David Savitsky, PhD¹ and Anthony Tolcher, MD⁴, ¹Agenus Inc. or subsidiary thereof (current or former employee), Lexington, MA; ²Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY; ³Mary Crowley Cancer Research center, Dallas, TX; ⁴NEXT Oncology, San Antonio, USA.

Background

AGEN2373 is a conditionally active CD137 agonist antibody designed to selectively enhance innate and adaptive immunity only in presence of Fc-gamma receptors

Figure 1: AGEN2373 (fully human, $IgG1\lambda$) is anticipated to enhance anti-tumor immunity through multiple mechanisms-of-action. Antibody-mediated CD137 agonist activity is expected to enhance antigen-presenting cells (APC), T cell, and natural killer (NK) cell function. In addition, AGEN2373 may target intratumoral Tregs for antibody-dependent cell cytotoxicity or phagocytosis (ADCC/ADCP)-mediated destruction^{1,2}

Figure 2: In contrast to reference clone 20H4.9 AGEN2373 agonist activity requires Fc-gamma receptor (FcγR) antibody clustering, as illustrated in the context of an APC-to-CD8+; T cell immunological synapse. This conditional activity is expected to mitigate on-target off-site immune activation potentially associated with immunerelated toxicities observed for this class.

Tool building for modeling AGEN2373 responses in mice AGEN2373 versus its mouse surrogate desired key characteristics

Validation of AGEN2373 true surrogate clone S3B1

Figure 4: AGEN2373 and AGEN2373 surrogate S3B1 binding properties were analyzed by SPR and flow cytometry. A) Mouse CD137-Fc was flowed over anti-mouse CD137 antibodies captured on a CM5 chip at a range of concentrations [0 to 300nM]. Dose titration of anti-CD137 antibodies binding to B) fully human, C) fully mouse, D) murinized-epitope, or E) humanized-epitope CD137. CD137 signaling in the presence and absence of antibody cross-linking was analyzed in a F) human- and G) mouse-epitope CD137⁺NFκB-luciferase reporter Jurkat cells.

Figure 3: A) Crystal structure of the trimer CD137-trimer CD137L (orange) complex (PDB: 6CPR) highlighting, with circles, CD137 agonist antibody epitopes. B) Ratio of affinity measured by SPR for Activating-to-Inhibitory Fc gamma-receptor reported for human IgG1 (human FcyRIIIA/FcyRIIB ratio), mouse IgG2a and mouse IgG2b (mouse FcyRIV/FcyIIB ratio). C) Epitope and Fc comparison of human and murine CD137 antibodies.

PK of anti-mouse CD137 agonist antibodies

Figure 5: Balb/c mice, naïve or implanted subcutaneously with 10⁵ CT26 cells, received intravenously 50µg anti-mouse CD137 surrogate clone S3B1 mslgG2b or 50µg anti-mouse CD137 reference antibody 3H3 rlgG2a (BioXcell), administered once at a tumor size range 50-100 mm³. A) Antibody concentration measured in plasma from 30 min to ~14 days post drug administration by a direct ELISA with an LLoQ of 0.022 µg/mL. B) Pharmacokinetic parameters were analyzed using Nonlinear-Mixed-Effects (NLME) methodology (software ADAP1 test was used to analyze differences between groups. 5) and fitted to a 2-compartment structural model (2-CM).

Figure 8: Balb/c mice were implanted subcutaneously with 10⁵ CT26 cells. Mice received intraperitoneally three 250µg injections of AGEN2373 surrogate S3B1 mslgG2b or antimouse CD137 reference antibody 3H3 rlgG2a (BioXcell), when tumor size reached 50-100 mm³. A) Experimental design. B) Spleens were harvested and weighed at day 18. A student t test was used to analyze differences between groups. C) Immune cell infiltrate of lower liver lobe was characterized by flow cytometry at day 18. A nonparametric Kruskal-Wallis

Efficacy of anti-mouse CD137 agonist antibodies is optimal with D4 targeted/mslgG2b format

Figure 6: Balb/c mice were implanted subcutaneously with 10⁵ CT26 cells. Mice were treated intraperitoneally twice weekly for 3 weeks with 50µg anti-mouse CD137 surrogate clone S3B1 mslgG2b, S3B1 mslgG2b.N297A, 3H3 mslgG2b, 3H3 mslgG2b.N297A, or a pool of isotype controls. Day 0 is the first day of treatment at tumor size of 50-100 mm³. A) Experimental design. B) Survival curve for each treatment group. C) Individual tumor volumes measured every 3-4 days (N=9 or 10). MsIgG2b.N297A carry a mutation reducing binding to Fc gamma receptors.

Figure 7: Immunophenotyping of the tumor microenvironment (TME) in A-D and blood in E-H in CT26 tumor-bearing mice treated twice weekly for 3 week with 50µg anti-mouse CD137 surrogate clone S3B1 mslgG2b, S3B1 mslgG2b.N297A, 3H3 mslgG2b, 3H3 mslgG2b.N297A, or a pool of isotype controls following experimental design of Figure 6. A, E. Frequencies of CD8 T cells and non Tregs CD4 T cells among CD45⁺ cells. B, F. Frequencies of Tregs among CD4 T cells. C, G. Frequencies of total NK cells among CD45⁺ cells. and mature CD11b+ NK cells among total NK cells. **D**, **H**. Frequencies of Tceos among CD8 T cells.

AGEN2373 surrogate does not show sign of liver inflammation

PD signatures reflect anti-mouse CD137 epitope/Fc format combinations mechanisms-of-action

	Т	reatment-r Adverse Ev	elated vents				С	Dose group	Tumor response a week 16
n		16							SD
Severity, n (%)								0.03 mg/kg	n/a
Grade 1 or 2		15 (93.7)							SD
Grade 3 or high	ner	0							n/a
								0.00	SD
	Pag	Basalina		On Treatment (highest grade per petient)				0.06 mg/kg	PD
	Daseillie		On neat	On meannent (ingliest grade per patient)					PD
Parameter	CTCAE	n (%)	Normal n	Grade 1	Grade 2	Grade 3		0.3 mg/kg	SD
	grade		(%)	n (%)	n (%)	n (%)			PD
ALT (U/L)	Normal	16 (100)	40 (75.0)	4 (05.0)		O(O O)			PD
	normal		12 (75.0)) 4 (25.0)	0 (0.0)	0 (0.0)			PD
AST (U/L)	Normal	10 (62 5)	9 (56 3)	1 (6 3)	0(0,0)	0(0,0)		1 mg/kg	n/a
	Grado 1	6 (37 5)	1 (6 3)	2 (12 5)	3 (18 7)	0(0.0)			PD
	Glade I	0 (07.0)	1 (0.0)	2 (12.0)	0 (10.7)	0 (0.0)			n/a
Total Bilirubin	Normal	15 (93.7)	15 (93.7)	0 (0.0)	0 (0.0)	0 (0.0)			n/a
(umol/L)	Grade 2	1 (6 3)*	0 (0 0)	0(00)	0 (0 0)	1 (6 3)*		Total SD	Λ

Figure 9. An ongoing phase 1 study [NCT04121676] of AGEN2373 to evaluate AGEN2373, with a cut-off date of October 6th, 2020. Patients were enrolled in a 3+3 dose escalation in doses ranging from 0.03 to 1 mg/kg cohorts. A) Summary of treatmentrelated adverse events. B) Summary for liver function parameters from baseline to worst post-baseline toxicity grade (CTCAE V5). C) Best overall responses. SD: 4 SD at 16 weeks.*Patient with progressing liver metastases. SD: stable disease. PD: Progressive Disease. n/a: not available

AGEN2373 surrogate antibody, in combination with other CPMs, improve responses in cold tumor mouse model

Figure 10: C57BI/6 mice were injected subcutaneously with 10⁵ B16F1-OVA cells and treated intraperitoneally twice weekly for 3 weeks as described in Figure 6 experimental design with 50µg AGEN2373 surrogate clone S3B1 mslgG2b and/or 50µg antimouse CTLA-4 AGEN1181 surrogate clone 9D9 mslgG2b.3M and/or 200µg of anti-mouse PD-1, AGEN2034 clone RPMI-14 rlgG2a or corresponding isotype control antibodies. Day 0 is the first day of treatment at tumor size of 50-100 mm³. A) Survival curve for each treatment group. B) Individual tumor volumes were measured every 3-4 days (N=9 or 10).

Preclinical efficacy and pharmacodynamic studies illustrated antibody critical CD137-epitope targeting and FcγR interactions that optimally promote innate and adaptative immune response against solid tumors while avoiding immune-related adverse events, especially liver inflammation observed for this antibody class.

- activation

Consistent with these findings, AGEN2373 monotherapy has shown clinical benefit in 4 patients (SD) and a favorable safety profile with no evidence of transaminitis in 16 patients dosed up a 1 mg/kg. A phase 1 study of AGEN2373 in combination with balstilimab (Agenus anti-PD-1 antibody) is planned.

References:

1. Sugamura et al., Nat Rev Immunol 2004 2. Kohrt et al., J Clin Invest 2014

- 3. Vincent, Oral Presentation, PEGS 2019
- 4. Buchan et al., Immunity 2018

Conclusions

• AGEN2373 and an affinity-, epitope-, and Fc-match surrogate antibody S3B1 exhibited selective CD137 agonist activity only in the presence of FcyRs.

• AGEN2373 surrogate is an Fc competent CD137 domain 4-targeting antibody that drives intratumorselective T cell expansion, NK cell activation, and Treg depletion but no systemic inflammation either in liver nor blood. In contrast, a CD137 domain 1-targeting antibody 3H3 induced systemic immune cell