New mechanistic insights from TME reconditioning by an Fc engineered anti-CTLA-4 antibody

11th Annual PEGS Europe, Lisbon
November 18th, 2019
Sylvia Vincent, PhD
Disclosures and forward-looking statements

Full-time employee at:

This presentation contains forward-looking statements. These forward-looking statements are subject to risks and uncertainties, including the factors described under the Risk Factors section of our most recent Annual Report on Form 10-K or Quarterly Report on Form 10-Q filed with the Securities and Exchange Commission and made available on our website at www.agenusbio.com. When evaluating Agenus’ business and prospects, careful consideration should be given to these risks and uncertainties. These statements speak only as of the date of this presentation, and Agenus undertakes no obligation to update or revise these statements. This presentation and the information contained herein do not constitute an offer or solicitation of an offer for sale of any securities.
How do we “raise the tail” on CTLA-4 therapies?

Jim Allison’s notebook (“Raise the tail”)

Canavan, N. A Cure Within: Scientists Unleashing the Immune System to Kill Cancer
Anti-CTLA-4 antibodies engage multiple mechanisms-of-action to promote T cell-mediated immunity

MoA 1: Ligand-Blockade
- **Lymph node**
- **Signal 1**
- **T cell**
- **APC**
- **CD80/CD86**
- **TCR**
- **MHC**
- **CTLA-4**
- **anti-CTLA-4**
- **FcγR-independent**

MoA 2: Treg Depletion via ADCC/P
- **TME**
- **Tumor**
- **ADCC**
- **ADCP**

MoA 3: Priming
- **Lymph node**
- **Signal 1**
- **T cell**
- **APC**
- **CD80/CD86**
- **TCR**
- **MHC**
- **FcγR-dependent**
Ipilimumab clinical data highlight importance of Fc-FcγR interactions for anti-CTLA-4 immunotherapy

Better clinical outcome in melanoma patients with high-affinity FcγRIIIA polymorphism

Better clinical outcome in melanoma patients with more circulating non-classical FcγR⁺ myeloid subset

Sources: Adapted from Vargas et al., Cancer Cell 2018; Adapted from Romano et al. PNAS 2015
FcγR co-engagement is required for T cell responses to anti-CTLA-4

Superantigen Stimulation Assay

Reduced cytokine secretion using hlgG1 Fc silent (N297A)

FcγRIIIA blockade attenuates T cell responses

Source: Waight et al., Cancer Cell 2018
Fc-engineered anti-CTLA-4 antibody improved binding to low- and high-affinity FcγRIIIA alleles

FcγRIIIA-enhanced: S239D/A330L/I332E

FcγRIIA/B-enhanced: S267E/L328F

Antibody binding to FcγRIIIA-expressing CHO cells

Source: Waight et al., Cancer Cell 2018
FcγRIIIA is the critical receptor for mediating T cell responses to anti-CTLA-4 immunotherapy.

Source: Waight et al., *Cancer Cell* 2018
Fc-enhanced antibody enhances T cell responses in FcγRIIIA low-affinity and high-affinity donors

In vitro PBMC superantigen stimulation

V/V 158
High-affinity receptor

F/F 158
Low-affinity receptor
~35% of population

Source: Agenus data
Fc-enhanced anti-CTLA-4 demonstrates increased potency in CT26 syngeneic tumor model

Titration of parental or Fc-enhanced CTLA-4 monoclonal antibody induces tumor control

1x10^5 CT26 cells s.c.
Single dose at 50-75 mm^3
Antibody administered at study day 8

Source: Agenus data
Fc-enhanced anti-CTLA-4 exhibits increased and selective intratumoral Treg depletion

Enhanced selective depletion of intratumoral Treg cells

Increased CD8 T effector ratio to Treg in the tumor

Source: Agenus data
Fc-enhanced anti-CTLA-4 antagonist exhibits dose-dependent tumor control in late-treatment model

Increased anti-tumor activity of Fc-enhanced anti-CTLA-4 antibody

Reduced potency of Fc-enhanced anti-CTLA-4 antibody with decreased dose

Source: Agenus data
Treg-independent MoA for tumor control

Selective depletion of regulatory T cells in the tumor

Source: Agenus data
TCR signaling correlates with FcγR affinity

Increased TCR signaling

Source: Waight et al., Cancer Cell 2018
Fc-enhanced anti-CTLA-4 increases T cell responses independent of antibody-mediated Treg depletion

In vivo antigen stimulation model

C57BL/6

Co-administration of SEB peptide and anti-CTLA-4 antibody

Anti-CTLA-4 increases T cell responses to SEB in Treg-depleted mice

Source: Waight et al., Cancer Cell 2018
Fc-enhanced anti-CTLA-4 increases T cell responsiveness after SEB stimulation

Enhanced SEB-specific T cell response

Increased functionality of SEB-specific T cells

Source: Agenus data
Fc-enhanced CTLA-4 expands memory T cells

non tumor-bearing model

```
non tumor-bearing model

CS7Bl/6

SEB + mAb

MPECs

% of TCR+ CD8 T cells

0 10 20 30 40

* isotype

Anti-CTLA-4

parental

Fc-enhanced

Increased memory-precursor effector cells

```

tumor bearing-model

```
tumor bearing-model

1x10^6 CT26

Increased memory T cells in the periphery

% CD45+ CD62L+ of CD8 T cells

0 5 10 15

* isotype control

Anti-CTLA-4

parental

anti-CTLA-4

Fc-enhanced

200 ug parental

200 ug anti-CTLA-4

100 ug anti-CTLA-4

50 ug anti-CTLA-4

Increased memory T cells in the periphery

```

Source: Agenus data
Summary: Two FcγR-dependent mechanisms contribute to therapeutic effect of Fc-enhanced anti-CTLA-4 immunotherapy.
Acknowledgments

**Agenus Inc.*
David Savitsky
Antoine Tanne
Dhan Chand
Claire Galand
Marilyn Marques
Elena Paltrinieri
Mariana Manrique
Lukasz Swiech
Benjamin Morin
Christine Brittsan
Jennifer Buell
Robert Stein
Nick Wilson
Jeremy Waight
Belinda Akpeng
Thomas Horn

Harvard, Boston Children’s Hospital
Ben Croker

Current or former employee